Digital Signal Processing Reference
In-Depth Information
6.2
Problem Solving
Exercise 1: Solve the following problems, briefly outlining the important
steps.
a.
Sample the following 2-d continuous functions f ( x,y ) (in the interval
given) to obtain 2-d discrete functions f ( n 1 ,n 2 ) in the form of 4
×
4
matrices. Sketch the sampled 2-d functions.
i.
f ( x,y ) = rect ( x /2, y /2), in the interval -1
η≤
1, -1
y
1,
1
,
−≤ ≤
axa bxb
;
−≤ ≤
(
) =
where
rect x a y b
,
0otherw se
,
ii.
f ( x,y ) = sin (
π
x /4) sin (
π
y /4), in the interval 0
x
8, 0
y
8.
b.
Find the 2-d DTFT F (
ω 1 ,
ω 2 ) of the following 2-d discrete functions
f ( n 1 ,n 2 ):
i.
f ( n 1 , n 2 ) =
δ
( n 1 - 2, n 2 - 2) +
δ
( n 1 - 1, n 2 - 3) +
δ
( n 1 - 3, n 2 - 1)
ii.
( n 1 - 1) u ( n 1 , n 2 )
iii. f ( n 1 , n 2 ) = e -( n 1 + n 2 ) u ( n 1 , n 2 )
f ( n 1 , n 2 ) =
δ
c.
The block diagram of an LSI system is given in Figure 6.4:
where x ( n 1 , n 2 ) = (0.5) n 1 (0.25) n 2 u ( n 1 , n 2 )
h ( n 1 , n 2 ) =
δ
( n 1 , n 2 ) +
δ
( n 1 - 1, n 2 ) +
δ
( n 1 , n 2 - 1) +
δ
( n 1 - 1, n 2 - 1)
i.
Determine the 2-d Fourier transform H (
ω 1 ,
ω 2 ) of the system im-
pulse response h ( n 1 , n 2 ).
ii.
Determine the 2-d Fourier transform Y (
ω 1 ,
ω 2 ), and hence, deter-
mine the output y ( n 1 , n 2 ).
x(n 1 ,n 2 )
h(n 1 ,n 2 )
y(n 1 ,n 2 )
FIGURE 6.4
Figure for problem (c).
 
Search WWH ::




Custom Search