Environmental Engineering Reference
In-Depth Information
k
l
z kl
i lk
i kl
I k
I l
i lm
i km
y ko
i ko
y lo
i lo
i mk
i ml
z lm
z km
m
i mo
I m
y mo
Figure 3.2
Electrical test network employed to develop the admittance matrix
relevant data regarding connectivity and line characteristics of the system. The con-
siderations taken if the admittance matrix is formed taking as a reference the three
node power system shown in Figure 3.2 are:
All nodal voltages are bus-to-ground values;
I k , I l and I m are the net injected nodal currents, respectively occurring, at nodes
k , l and m ;
Although node k is the slack bus, the nodal currents flow into the system
from multiple elements ( e.g. generators) but these are not shown for simplicity
purposes;
z kl , z lm and z km are the positive sequence impedances between nodes;
y ko , y lo and y ko are the positive sequence shunt admittances for the Pi-section.
The admittance value is the inverse of the impedance. If we apply KCL to the
network, the following sets of equations represent the system from Figure 3.2:
I k
=
i kl +
i km +
i ko =
y kl ( V k
V l )
+
y km ( V k
V m )
+
y ko ( V k )
(3.5)
I l
=
i lk +
i lm +
i lo =
y lk ( V l
V k )
+
y lm ( V l
V m )
+
y lo ( V l )
(3.6)
I m
=
i mk +
i ml +
i mo =
y mk ( V m
V k )
+
y ml ( V m
V l )
+
y mo ( V m )
(3.7)
The above set of equations can be revised as:
I k
=
( y kl +
y km +
y ko ) V k
y kl V l
y km V m
(3.8)
I l
=−
y lk V k +
( y lk +
y lm +
y lo ) V l
y lm V m
(3.9)
I m
=−
y mk V k
y ml V l +
( y mk +
y ml +
y mo ) V m
(3.10)
Thus, the admittances for the matrix model (with capital letters) can be defined:
Y kk
=
y kl +
y km +
y ko
(3.11)
Y ll
=
y lk +
y lm +
y lo
(3.12)
Y mm
=
y mk +
y ml +
y mo
(3.13)
Search WWH ::




Custom Search