Biomedical Engineering Reference
In-Depth Information
[582] Kirby, A. R.; Gunning, A. P.; Morris, V. J., Imaging polysaccharides by atomic force
microscopy. Biopolymers 1996, 38 (3), 355-66.
[583] Adams, E. L.; Kroon, P. A.; Williamson, G.; Morris, V. J., Characterisation of heterogeneous
arabinoxylans by direct imaging of individual molecules by atomic force microscopy. Carbo-
hydrate Research 2003, 338 (8), 771-80.
[584] Misevic, G. N., Atomic force microscopy measurements -measurements of binding strength
between a single pair of molecules in physiological solutions. Molecular Biotechnology 2001,
18 (2), 149-53.
[585] Stolz, M.; Stoffler, D.; Aebi, U.; Goldsbury, C., Monitoring biomolecular interactions by
time-lapse atomic force microscopy. JournalofStructuralBiology 2000, 131 (3),
171-80.
[586] Forman, J. R.; Clarke, J., Mechanical unfolding of proteins: insights into biology, structure
and folding. Current Opinion in Structural Biology 2007, 17 (1), 58-66.
[587] Zhao, J. W.; Davis, J. J.; Sansom, M. S. P.; Hung, A., Exploring the electronic and mechanical
properties of protein using conducting atomic force microscopy. Journal of the American
Chemical Society 2004, 126 (17), 5601-9.
[588] Vinckier, A.; Gervasoni, P.; Zaugg, F.; Ziegler, U.; Lindner, P.; Groscurth, P.; Pluckthun, A.;
Semenza, G., Atomic force microscopy detects changes in the interaction forces between
GroEL and substrate proteins. Biophysical Journal 1998, 74 (6), 3256-63.
[589] Krishna, K. A.; Rao, G. V.; Rao, K., Chaperonin GroEL: structure and reaction cycle. Current
Protein and Peptide Science 2007, 8 (5), 418-25.
[590] Mou, J. X.; Sheng, S. T.; Ho, R. Y.; Shao, Z. F., Chaperonins GroEL and GroES: views from
atomic force microscopy. Biophysical Journal 1996, 71 (4), 2213-21.
[591] Leung, C.; Palmer, R. E., Adsorption of a model protein, the GroEL chaperonin, on surfaces.
Journal of Physics - Condensed Matter 2008, 20 (35), 353001.
[592] Valle, F.; DeRose, J. A.; Dietler, G.; Kawe, M.; Pluckthun, A.; Semenza, G., AFM structural
study of the molecular chaperone GroEL and its two-dimensional crystals: an ideal 'living'
calibration sample. Ultramicroscopy 2002, 93 (1), 83-89.
[593] Yokokawa, M.; Wada, C.; Ando, T.; Sakai, N.; Yagi, A.; Yoshimura, S. H.; Takeyasu, K.,
Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational
changes of GroEL. EMBO Journal 2006, 25 (19), 4567-76.
[594] Sit, P. S.; Marchant, R. E., Surface-dependent differences in fibrin assembly visualized by
atomic force microscopy, Surface Science 2001, 491 (3), 421-32.
[595] Baselt, D. R.; Revel, J. P.; Baldeschwieler, J. D., Subfibrillar structure of type-I
collagen observed by atomic-force microscopy. Biophysical Journal 1993, 65 (6),
2644-55.
[596] Gale, M.; Pollanen, M. S.; Markiewicz, P.; Goh, M. C., Sequential assembly of collagen
revealed by atomic-force microscopy. Biophysical Journal 1995, 68 (5), 2124-8.
[597] Paige, M. F.; Rainey, J. K.; Goh, M. C., A study of fibrous long spacing collagen ultrastructure
and assembly by atomic force microscopy. Micron 2001, 32 (3), 341-53.
[598] Abraham, L. C.; Zuena, E.; Perez-Ramirez, B.; Kaplan, D. L., Guide to collagen character-
ization for biomaterial studies. Journal of Biomedical Materials Research B, Applied Bio-
materials 2008, 87 (1), 264-85.
[599] Revenko, I.; Sommer, F.; Minh, D. T.; Garrone, R.; Franc, J. M., Atomic-force microscopy
study of the collagen fiber structure. Biology of the Cell 1994, 80 (1), 67-9.
[600] Fotiadis, D.; Scheuring, S.; M¨ ller, S. A.; Engel, A.; M¨ ller, D. J., Imaging and manipulation
of biological structures with the AFM. Micron 2002, 33 (4), 385-97.
[601] Anselmetti, D.; Luthi, R.; Meyer, E.; Richmond, T.; Dreier, M.; Frommer, J. E.; Guntherodt,
H. J., Attractive-mode imaging of biological materials with dynamic force microscopy.
Nanotechnology 1994, 5 (2), 87-94.
Search WWH ::




Custom Search