Biomedical Engineering Reference
In-Depth Information
[399] Agnihotri, A.; Garrett, J. T.; Runt, J.; Siedlecki, C. A., Atomic force microscopy visualization
of poly(urethane urea) microphase rearrangements under aqueous environment. Journal of
Biomaterials Science - Polymer Edition 2006, 17 (1-2), 227-38.
[400] Marti, O.; Stifter, T.; Waschipky, H.; Quintus, M.; Hild, S., Scanning probe microscopy of
heterogeneous polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects
1999, 154 (1-2), 65-73.
[401] Simon, A.; Durrieu, M. C., Strategies and results of atomic force microscopy in the study of
cellular adhesion. Micron 2006, 37 (1), 1-13.
[402] Tak, Y.-H.; Kim, K.-B.; Park, H.-G.; Lee, K.-H.; Lee, J.-R., Criteria for ITO (indium-tin-
oxide) thin film as the bottom electrode of an organic light emitting diode. Thin Solid Films
2002, 411 (1), 12-16.
[403] Whitehead, K. A.; Verran, J. The effect of surface topography on the retention of micro-
organisms, Food and Bioproducts Processing 2006, 84 (4), 253-59.
[404] Mitik-Dineva, N.; Wang, J.; Truong, V. K.; Stoddart, P.; Malherbe, F.; Crawford, R. J.;
Ivanova, E. P., Escherichia coli, Pseudomonas aeruginosa , and Staphylococcus aureus
attachment patterns on glass surfaces with nanoscale roughness. Current Microbiology
2009, 58 (3), 268-73.
[405] Swerts, J.; Temst, K.; Van Bael, M. J.; Van Haesendonck, C.; Bruynseraede, Y., Magnetic
domain wall trapping by in-plane surface roughness modulation. Applied Physics Letters
2003, 82 (8), 1239-41.
[406] Cai, K. Y.; Muller, M.; Bossert, J.; Rechtenbach, A.; Jandt, K. D., Surface structure and
composition of flat titanium thin films as a function of film thickness and evaporation rate.
Applied Surface Science 2005, 250 (1-4), 252-67.
[407] Yu, E. T., Nanoscale characterization of semiconductor materials and devices using scanning
probe techniques. Materials Science & Engineering R-Reports 1996, 17 (4-5), 147-206.
[408] Walther, F.; Heckl, W. M.; Stark, R. W., Evaluation of nanoscale roughness measurements on
a plasma treated SU-8 polymer surface by atomic force microscopy. Applied Surface Science
2008, 254 (22), 7290-95.
[409] Shellenberger, K.; Logan, B. E., Effect of molecular scale roughness of glass beads on
colloidal and bacterial deposition. Environmental Science & Technology 2002, 36 (2),
184-89.
[410] Smith, J. R.; Swift, J. A., Maple syrup urine disease hair reveals the importance of 18-
methyleicosanoic acid in cuticular delamination. Micron 2005, 36 (3), 261-66.
[411] Cacciafesta, P.; Hallam, K. R.; Watkinson, A. C.; Allen, G. C.; Miles, M. J.; Jandt, K. D.,
Visualisation of human plasma fibrinogen adsorbed on titanium implant surfaces with differ-
ent roughness. Surface Science 2001, 491 (3), 405-20.
[412] Cacciafesta, P.; Hallam, K. R.; Oyedepo, C. A.; Humphris, A. D. L.; Miles, M. J.; Jandt, K. D.,
Characterization of ultraflat titanium oxide surfaces. Chemistry of Materials 2002, 14 (2),
777-89.
[413] MacDonald, D. E.; Markovic, B.; Allen, M.; Somasundaran, P.; Boskey, A. L., Surface
analysis of human plasma fibronectin adsorbed to commercially pure titanium materials.
Journal of Biomedical Materials Research 1998, 41 (1), 120-30.
[414] Larsson, C.; Thomsen, P.; Aronsson, B. O.; Rodahl, M.; Lausmaa, J.; Kasemo, B.; Ericson, L.
E., Bone response to surface-modified titanium implants: studies on the early tissue response
to machined and electropolished implants with different oxide thicknesses. Biomaterials
1996, 17 (6), 605-16.
[415] MĀ“ndez-Vilas, A.; Bruque, J. M.; Gonzalez-Martin, M. L., Sensitivity of surface
roughness parameters to changes in the density of scanning points in multi-scale
AFM studies. Application to a biomaterial surface. Ultramicroscopy 2007, 107 (8),
617-25.
Search WWH ::




Custom Search