Geology Reference
In-Depth Information
Similarly, for the strike-slip system (9.64) we find
2 n
1
r 3
+
u n ( r )
=
n ( n
+
1)δ( r
r 0 )cosα,
2 n
1
r 3 δ( r
+
u n ( r )
=−
r 0 )cosα,
+
2 n
1
v n ( r )
r 2 δ ( r
=−
r 0 )cosα,
2 n
+
1
n ( r )
1) δ ( r
=
v
r 0 )cosα,
r 2 n ( n
+
3 i ( 2 n
+
1 )
v n ( r )
=−
( n
1)( n
+
2)δ( r
r 0 )sinα,
16π r 3
1)
16π r 3 n ( n +
3 i (2 n
+
n ( r )
v
=
1 ) δ( r
r 0 )sinα,
(9.82)
2 n
1
r 3 δ( r
+
t n ( r )
=−
r 0 )sinα,
i (2 n
+
1)
t n ( r )
r 2 δ ( r
=−
r 0 )cosα,
i (2 n
+
1)
t n ( r )
1) δ ( r r 0 )cosα,
=−
r 2 n ( n
+
3 ( 2 n +
1 )
t n ( r )
=
( n
1)( n
+
2)δ( r
r 0 )sinα,
16π r 3
1)
16π r 3 n ( n +
3 (2 n
+
t n ( r )
=
1) δ( r
r 0 )sinα.
cients of the radial spheroidal, transverse
spheroidal and torsional parts of the extra double-force densities (9.79), arising
from co-ordinate curvature for the dip-slip system, and taking the limit as θ 0 goes
to zero, we find
Once again, extracting the radial coe
2 n
1
r 3 δ( r
+
u n ( r )
=
r 0 ) sin 2α,
2 n
1
r 3 δ( r
+
n ( r )
=−
v
r 0 ) sin 2α,
i (2 n
1)
r 3 δ( r
+
v n ( r )
=
r 0 )cos2α,
i (2 n
+
1)
1
v
n ( r )
=
1) r 3 δ( r
r 0 )cos2α,
n ( n
+
 
Search WWH ::




Custom Search