Geology Reference
In-Depth Information
Since the current estimate of the eigenvector satisfies (8.76), we have
A r ) x r
σ r ) x r + 1
+
r + 1
0.
(8.80)
The iterative scheme (8.76) allows large changes in the magnitude and direction of
the eigenvector, so that at each step the eigenvector is normalised to unit magnitude,
giving x r ·
1. Thus, if det A 0,
x r =
x r
+
r + 1
σ r ) x r + 1
0
(8.81)
and
1
x r + 1 · x r ,
σ r + 1
= σ r
(8.82)
giving the improved estimate of the eigenfrequency.
Given the solution for the generalised displacement potential χ, the displacement
vector is found from relation (7.16). In spherical polar co-ordinates, the vector
displacement u has components ( u r , u θ , u φ )givenby,
F m m σ +
z 2
σ
z 2 r
z 1
z 2
Φ z e im φ ,
2
ru r =
Φ+
Φ r
(8.83)
F m σ z 2
1
2 m σ z
z 1
z 2 σ
2 r sinθ u θ =
2
2
2 r
σ
ζ
+
ζ
Φ+
Φ
r
z 2
2 1
z 2 σ
z e im φ ,
2
2
ζ
Φ
(8.84)
F m m σ +
z 2 1
2 1
z 2 r
2
σ r sinθ u φ =
ζ
Φ+ σ
Φ
r
1
2 z 1
z 2
z e i ( m φ + π/2)
2
ζ
Φ
,
(8.85)
with the common factor F m defined by
1
z 2 m /2
F m
=
2 N 2 z 2
1
(8.86)
4
Ω
ζ
2
and the parameter ζ
2 defined by
N 2
σ
2
2
+ N 2
1 .
ζ
=
1
σ
=
2 ζ
(8.87)
Using only the first term of the expansion (8.36) as an approximation, the factor
F m becomes
1
z 2 m /2
F m
=
2 σ
1 .
(8.88)
4
Ω
2
σ
2
2
In the case of the Poincare inertial wave equation, the parameter ζ
2 reduces to
2
2
ζ
=
1
σ
.
(8.89)
 
Search WWH ::




Custom Search