Geology Reference
In-Depth Information
with
1
y 1, n ( r ) = (2 n + 1) ( n
m )!
u · n P n ( z ) dz
( n
+
m )!
0
n
·
s
1) ( n
m )!
( n + m )!
=
2 σ
1 r 0 (2 n
+
2
2
4
Ω
σ
1
z 2 m /2 m σ +
z V P n ( z ) dz .
1
z 2
2
z 2
, z 3
×
(8.53)
0
With a four-vector defined as
1) ( n
m )!
e n , ( r ,σ)
=
(2 n +
( n
+
m )!
z 2 ( z )
z ( z 2
1)η ( z )
m +
+
1
1
z 2 m /2
z 2 ) r η ( z )
m + z 2 ( z )
2
P n ( z ) dz ,
×
+ z ( z 2
1)ψ
0
2
z 2 ) r ψ ( z )
(8.54)
substitution for V in (8.53) from (8.41) gives, for the core-mantle boundary,
N 1
e n , j (1,σ) x M , j +
e n , j + 1 (1,σ) x M , j + 1 ,
1
y 1, n ( b )
=
2 σ
1 b
(8.55)
4
Ω
2
σ
2
j = 1
while substitution for V in (8.53) from (8.43) gives, for the inner core boundary,
N 1
e n , j ( a / b ,σ) x 1, j +
e n , j + 1 ( a / b ,σ) x 1, j + 1 . (8.56)
1
y 1, n ( a )
=
2 σ
1 a
4
Ω
2
σ
2
j = 1
Using the internal load Love number for the shell (7.60), y 1, n ( b ) may be related
to χ n ( b ), which in turn is expressed by (8.48). Similarly, using the internal load
Love number for the inner core (7.61), y 1, n ( a ) may be related to χ n ( a ), which in
turn is expressed by (8.49). Continuity of normal displacement at the boundaries
of the outer core then yields two linear, homogeneous constraint equations for each
harmonic degree n :
N
1
c n , j (1,σ) x M , j +
c n , j + 1 (1,σ) x M , j + 1
=
0,
(8.57)
j = 1
for the core-mantle boundary, and
N 1
c n , j ( a / b ,σ) x 1, j +
c n , j + 1 ( a / b ,σ) x 1, j + 1
=
0,
(8.58)
j = 1
 
Search WWH ::




Custom Search