Geology Reference
In-Depth Information
Now consider variations, δχ, in the generalised displacement potential χ, subject
only to essential boundary conditions , excluding continuity of the normal compon-
ent of displacement at the boundaries of the fluid outer core. The variation in the
functional
F
,causedbyavariationδχ in χ,is
1
2 σ
f
·∇ δχ d V
2
2
δχ ·
·∇ χ +∇ χ ·
δ F =−
4
Ω
σ
T
T
V
1
2 σ
f δχ u B ·
n d
2
2
+ δχ u B ·
+
4
Ω
σ
n
S ,
(8.14)
S
using the symmetry of χ n and χ n in expression (8.11). The volume integral can be
transformed with the vector identity,
+∇· f δχ T
·∇ χ .
δχ ·
·∇ χ =− δχ ∇·
( f T
·∇ χ )
f
T
(8.15)
·∇ χ) =
χ ·
T ·∇ χ =
u , and a second vector
Since T is Hermitian,
T
=
( T
identity emerges,
·∇ δχ =− δχ ∇· f T ·∇ χ +∇· f δχ T ·∇ χ .
χ ·
f
T
(8.16)
Using both vector identities, we find
1
2 σ
δχ ∇·
+ δχ ∇· f T ·∇ χ d
2
2
δ F =
4
Ω
σ
( f T
·∇ χ)
V
V
1
2 σ
·∇ χ +∇· f δχ T ·∇ χ d
∇· f δχ T
2
2
4
Ω
σ
V
V
1
2 σ
f δχ u B ·
n d S
2
2
n + δχ u B ·
+
4
Ω
σ
S
1
2 σ
δχ ∇·
+ δχ ∇· f T ·∇ χ d
2
2
=
4
Ω
σ
( f T
·∇ χ)
V
V
1
2 σ
f δχ T
·∇ χ + δχ T ·∇ χ
2
2
4
Ω
σ
·
n d
S
S
1
2 σ
f δχ u B
n d
2
2
+ δχ u B ·
+
Ω
·
n
S ,
4
σ
(8.17)
S
on using the divergence theorem of Gauss to transform the second volume integral
to a surface integral. The vector displacement field in the interior of the outer core
is given by equation (8.1) as u
=
T
·∇ χ. Thus, the variation in the functional
F
,
causedbythevariationδχ in χ, becomes
1
2 σ
( f u )δχ +∇· f u δχ d
2
2
δ F =
4
Ω
σ
∇·
V
V
1
2 σ
f u
n δχ d
u B ·
n δχ + u
u B ·
2
2
4
Ω
σ
S . (8.18)
S
Search WWH ::




Custom Search