Geology Reference
In-Depth Information
If we take their scalar product, multiply by sinθ, and integrate over a sphere, we
find that
π
S n ·
S k
sinθ d θ d φ
l
0
0
π
u n u l P n P l sinθ e i ( m + k d θ d φ
=
0
0
P n P l
π
0 v
dP l
dP n
d θ
mk
sin 2
m
n v k
sinθ e i ( m + k d θ d φ.
+
d θ
(1.199)
l
θ
0
From the orthogonality of Legendre functions (1.180), the first integral on the
right is
1) m 4 π
2 n
k u n u l .
n
m
(
1 δ
l δ
(1.200)
+
After integrating over φ, the second integral on the right gives
P n P l
π
dP l
dP n
d θ
m 2
sin 2
m
n v k
2πδ
k v
d θ +
sinθ d θ.
(1.201)
l
θ
0
Further integration by parts of the first term yields
P l
π
sinθ
P l sinθ d θ
dP n
d θ
π
0
dP n
d θ
1
sinθ
d
d θ
m
n v k
2πδ
k v
sinθ
l
0
π
(1.202)
m 2
sin 2
P n P l sinθ d θ
+
.
θ
0
Since sinθ vanishes at both limits, and on replacing
sinθ
n ( n
P n ,
dP n
d θ
m 2
sin 2
1
sinθ
d
d θ
by
+
1)
(1.203)
θ
in accordance with Legendre's equation (B.1), we are left with
1) π
0
n v k
m
P n P l sinθ d θ
2πδ
k v
n ( n
+
l
(1.204)
1) m 4 π
2 n
n
m
n v l .
=
(
1 δ
l δ
k n ( n
+
1)v
+
The spheroidal vector fields S n and S k
then obey the orthogonality relation
l
π
S n ·
S k
sinθ d θ d φ
l
0
0
1 u n ( r ) u l ( r )
n v l ( r ) δ
1) m 4 π
2 n
m
n
m
=
(
+
n ( n
+
1)v
l δ
k .
(1.205)
+
 
Search WWH ::




Custom Search