Geology Reference
In-Depth Information
or
2
=− α
C
·∇ B ,
g 0 ·
u
(7.14)
β
with
2 σ
1
k
g 0 2
2
β σ
2
4
Ω
α
2
2
2
0
B
=
+ σ
g
·
.
(7.15)
Substitution for g 0
·
u from expression (7.14) in the displacement field formula
(7.3) leads to
k k
·∇ χ
1
C C
·∇ χ
B
k
2
u
=
2 σ
1
σ
χ
+
i σ
×∇ χ
,
(7.16)
2
2
4
Ω
σ
expressing the vector displacement field u entirely in terms of the gradient of the
generalised potential χ. For this reason, χ can be referred to as the generalised
displacement potential . The displacement field must satisfy the subseismic form
(6.181) of the equation of continuity, or
k k
·∇ χ
2 σ
1 1
α
C C
·∇ χ
B
k
2
2
2
∇·
σ
χ
+
i σ
×∇ χ
=−
4
Ω
σ
2 g 0
·
u .
(7.17)
Once again using the vector identities (6.10) and (6.11), with k replacing Ω ,but
also using the identity (A.9), and substituting from (7.14), we find
C
1
k
2
2 σ
2
β σ
·∇ χ
B
C
·∇ χ
B
4
Ω
2
2
C ·∇
C +
2
σ
χ
·∇
χ
=
∇·
.
(7.18)
The divergence of C is
k
g 0 k
k
g 0 .
C =− σ
2
∇·
∇·
g 0
+∇·
·
i σ ∇·
×
(7.19)
This expression can be transformed using the vector identities
k · g 0 k
k · g 0
k · g 0
k · g 0
k +
k ·∇
k ·∇
∇·
=
∇·
=
(7.20)
and
k
g 0
k
k
∇·
×
=
g 0
·
∇×
·
(
∇×
g 0 )
=
0,
(7.21)
 
Search WWH ::




Custom Search