Geology Reference
In-Depth Information
di
erence in the moments of inertia, is found by the subroutine DERIV from Sec-
tion 1.6. The remaining quantities, the masses M i and M i , required for the calcula-
tion of the coe
ff
cient of the gravity torque (5.266) are also found. The results are
contained in the output file torque.dat.
C
PROGRAMME TORQUE.FOR
C
C TORQUE.FOR calculates the quantities needed to find the gravity
C restoring torque on a tilted inner core. These include
C the difference between the axial and equatorial moments of inertia
C and the radial derivative of the flattening.
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION R(100),RHO(100),RHOB(100),F(100),RI(100),RHOI(100),
1 RHOBI(100),FI(100),FPI(100),B(98,198),C(100,100),Q(100),CMA(100),
2 ENAME(10),W(6),X(6)
DOUBLE PRECISION MASS(100),INT(100,4),MASSIP,MASSC
CHARACTER*7 ENAME
C Open inner core data file.
OPEN(UNIT=1,FILE='innerc.dat',STATUS='OLD')
C Open torque file.
OPEN(UNIT=2,FILE='torque.dat',STATUS='UNKNOWN')
C Set value of pi.
PI=3.141592653589793D0
C Set value of universal constant of gravitation (CODATA 2006).
G=6.67428D-11
C Set angular frequency of Earth's rotation (WGS84).
OMEGA=7.292115D-5
C Set maximum dimensions for interpolation.
M1=100
M2=198
M3=98
C Read in and write out Earth model name.
READ(1,10)(ENAME(I),I=1,10)
10 FORMAT(10A7)
WRITE(2,11)(ENAME(I),I=1,10)
11 FORMAT(11X,10A7)
C Read in number of inner core model points.
READ(1,12)NM
12 FORMAT(1X,I9)
C Read in density at the bottom of the outer core.
READ(1,13)RHOBOC
13 FORMAT(1X,D15.8)
C Read in inner core model data.
READ(1,14)(R(I),RHO(I),RHOB(I),F(I),I=1,NM)
14 FORMAT(1X,4D15.8)
C Set up interpolation for inner core.
N1=NM
N2=2*N1-2
N3=N1-2
C Enter number points in model of the inner core.
WRITE(6,15)
15 FORMAT(//'Select number of model points for inner core.')
READ(5,*)NS
CALL SPMAT(N1,N2,N3,C,R,B,M1,M2,M3)
C Interpolate onto equally spaced inner core model points.
NSM1=NS-1
C Find space between model points.
H=R(NM)/DFLOAT(NSM1)
Search WWH ::




Custom Search