Geology Reference
In-Depth Information
a i 1
2
3 f i 1
2
3 f i P 2 (cosθ)
R
=
+
+···
a i 1
2
3 f i 1
P 2 (cosθ) +···
=
+
.
(5.223)
Θ
Replacing P n (cos
) by the addition formula (B.9), we have
G
ρ( r )
d
V
|
r
r |
G ρ i
n
r n
1) m P n (cosθ)
≈−
(
×
m =− n
n = 0
e im φ ) π
0
R
1
( r ) n 1 dr P n (cosθ )sinθ d θ d φ .
(5.224)
0
a i
The inner integral becomes
a i 1 +
3 f i 1 P 2 (cosθ )
R
2
( r ) 2 n
2
1
( r ) n 1 dr =
n
a i
a i
a 2 i 1
3 f i 1
P 2 (cosθ ) 2 n
2
a 2 n
i
+
=
2
n
a 2 i 1
n ) f i 1
P 2 (cosθ )
2
a 2 n
i
+
3 (2
=
2
n
2
f i 1
P 2 (cosθ ) .
3 a 2 n
=
(5.225)
i
Using the orthogonality relation (B.7), we find the contribution of region to the
gravitational potential V 0 to be
G
ρ( r )
8 3 G ρ i a i f i +
8 15 G ρ i f i r 2 P 2 (cosθ),
V ≈−
d
(5.226)
r |
|
r
correct to first order in the flattening.
For region , entirely outside the sphere of radius a i , once again the expansion
(5.118) for 1/ D can be used. The contribution of this region to the gravitational
potential V 0 is then
G
d
π
G
ρ( r )
0 ρ( r 0 ) P n (cos
Θ
)
V =−
r n
V .
d
d
(5.227)
|
r
r |
R n + 1
0
n = 0
2
3 f i )
a i (1
+
 
Search WWH ::




Custom Search