Geology Reference
In-Depth Information
and
r = r i =
f
3
3 f
r 3 +
3 f
r 2
3 f
r ∂y
3 f
∂y
r + f
3 f
3 f 2
2 + f 3
∂y +
∂y
3
f
∂y
2 f
2 f
r 2 +
2 f
2 f
∂y
+ f
∂y
2 f
r ∂y + f 2
r + f f
+
2
∂y
r = r i
3 f
2 f
r ∂y +
2 f
∂y
f f
∂y
f
+
r +
2
r = r i . (3.271)
With the abbreviation f y = f /∂y, substituting (3.269) and (3.271) in (3.266), it is
found that
f
∂y
2
f
∂y
3 Df D f
∂y
D 3 f
D 2 f
=
+
+
Df
+
hf +
3! D 2 f + f y Df
h 2
2! Df +
h 3
y i + 1 y i =
3 Df Df y r = r i +
4! D 3 f
h 4
O h 5 .
f y D 2 f
f 2
+
+
+
+
y Df
(3.272)
To lowest order, extension of the solution from radius r i to r i + 1 is
O h 2 .
y i + 1
y i =
hf ( r i ,y i )
+
(3.273)
This is simply a trapezoidal extension of y( r ) assuming constant slope, d y/ dr
=
f ( r i ,y i ).
A better approximation would allow for the change of slope from that at the
beginning of the interval to an estimate of the slope elsewhere on the interval.
Taking a weighted average of the two, we would write
y i + 1 y i = w 1 hf i + w 2 hf ( r i + α 2 h ,y i + β 21 hf i )
= w 1 k 1 + w 2 k 2 ,
(3.274)
where w 1 , w 2 , α 2 , β 21 are parameters to be determined. Taylor expansion in two
variables gives
r = r i +··· .
f
+ α 2 h f
r + β 21 hf i f
f ( r i
+ α 2 h ,y i
+ β 21 hf i )
=
(3.275)
∂y
Then,
r = r i +
h (w 1 + w 2 ) f
+ w 2 h 2
O h 3
α 2 f
r + β 21 f i f
y i + 1 y i =
∂y
+ w 2 h 2 D 2 f r = r i +
h (w 1
O h 3 ,
=
+ w 2 ) f
(3.276)
 
Search WWH ::




Custom Search