Geology Reference
In-Depth Information
and
= g 22 du 2
= g 33 du 3
ds 2
, ds 3
,
(1.54)
represent infinitesimal displacements in the u 2 and u 3 directions, respectively.
Next, we consider an element of surface area da 1 , on the surface defined by u 1
constant, contained by the parallelogram formed by the infinitesimal displacements
d s 2 , d s 3 along the directions u 2 , u 3 . The area of the parallelogram is
du 2 du 3
= |
d s 2
×
d s 3
| = |
b 2
×
b 3
da 1
|
,
(1.55)
with
( b 2
b 3 )
( b 2
b 3 ) .
|
b 2
×
b 3
|=
×
·
×
(1.56)
Using the vector identity (A.3),
( b 2
×
b 3 )
·
( b 2
×
b 3 )
=
( b 2
·
b 2 )( b 3
·
b 3 )
( b 2
·
b 3 )( b 3
·
b 2 ),
(1.57)
we find that
2
23 du 2 du 3
da 1
=
g 22 g 33
g
.
(1.58)
Similarly, for elements on the u 2 and u 3 surfaces their areas are
2
31 du 3 du 1
da 2 =
g 33 g 11 g
(1.59)
and
12 du 1 du 2
da 3
=
g 11 g 22
g
.
(1.60)
An element of volume, bounded by the three co-ordinate surfaces, is given by
( b 2 × b 3 ) du 1 du 2 du 3
d v = d s 1 ·
( d s 2 × d s 3 )
= b 1 ·
.
(1.61)
If we set V
=
b 2 ×
b 3 in the expression (1.17), we get
b i
b 3 ) b i .
b 2
×
b 3
=
·
( b 2
×
(1.62)
Replacing b i by its expressions (1.6) and taking the scalar product with b 1 ,wehave
( b 2 ×
b 1
b 1 ·
( b 2 ×
b 3 )
=
b 3 ) ·
b 3 )
·
( b 2 ×
b 3 ) b 1 +
( b 3 ×
b 1 )
·
( b 2 ×
b 3 ) b 2
b 1
·
( b 2
×
b 3 ) b 3
+
( b 1 ×
b 2 )
·
( b 2 ×
.
(1.63)
 
Search WWH ::




Custom Search