Geology Reference
In-Depth Information
2
The i th spectral estimate entering the product is χ
ν i distributed with probability
density function
1
i /2) x ν i /2 1
p i ( x i )
=
exp (
x i /2).
(2.396)
i
2 ν i /2
Γ
On the assumption that the individual spectral estimates are statistically independ-
ent, the cumulative distribution function for the spectral estimates in the product
spectrum is
p 1 ( x 1 )
0
p n 1 ( x n 1 )
0
F ( z )
=
p 2 ( x 2 )
···
p n ( x n )
0
0
z ξ n
1
n + 1 /2) x ν n + 1 /2 1
·
exp(
x n + 1 /2) dx n + 1 dx n
···
dx 1 .
n + 1
2 ν n + 1 /2
Γ
0
(2.397)
With the change of the variable of integration to t
=
x n + 1 /2, the innermost integral
becomes
z ξ n /2
1
t ν n + 1 /2 1 e t dt
=
P n + 1 /2, z ξ n /2),
(2.398)
Γ
n + 1 /2)
0
where
y
1
t a 1 e t dt
P ( a ,y)
=
(2.399)
Γ
( a )
0
is the incomplete gamma function and
Γ
( a ) is the gamma function. The gamma
function has the integral representation
t a 1 e t dt .
Γ
( a )
=
(2.400)
0
Calculation of the incomplete gamma function then requires calculation of the
gamma function and the integral
y
t a 1 e t dt .
γ( a ,y)
=
(2.401)
0
As a function of y the incomplete gamma function ranges from P ( a ,0)
=
0to
P ( a ,
)
=
1. Its complement is then
y
1
1
t a 1 e t dt
t a 1 e t dt
1
P ( a ,y)
=
Γ
( a )
Γ
( a )
0
0
1
t a 1 e t dt = Γ
( a ,y)
Γ
=
( a ) ,
(2.402)
Γ
( a )
y
 
Search WWH ::




Custom Search