Geology Reference
In-Depth Information
giving
h ( t
H ( f ) e i f ( t τ) df .
τ)
=
(2.323)
−∞
Thus, the autocorrelation of g( t ) becomes
h ( t )
−∞
1
T
H ( f ) e i f ( t τ) dfdt
φ gg (τ)
=
lim
T →∞
−∞
1
T
H ( f ) e i f τ
h ( t ) e i ft dt
=
lim
T →∞
·
·
df ,
(2.324)
−∞
−∞
on reversing the order of integration. Now,
h ( t ) e i ft dt
=
H ( f ),
(2.325)
−∞
the Fourier transform of h ( t ). Hence,
1
T
H ( f ) H ( f ) e i f τ df
φ gg (τ)
=
lim
T →∞
−∞
−∞ |
1
T
2 e i f τ df
S gg ( f ) e i f τ df ,
=
lim
T →∞
H ( f )
|
=
(2.326)
−∞
indicating that the power spectral density is
1
T |
2
S gg ( f )
=
lim
T
H ( f )
|
→∞
h ( t ) e i ft dt
2
1
T
=
lim
T →∞
−∞
T /2 g( t ) e i ft dt
T /2
2
1
T
=
lim
T →∞
.
(2.327)
In any practical case, we are confined to records of finite length and have only
the sample power spectral density estimator ,
T /2 g( t ) e i ft dt
T /2
2
1
T
S gg ( f )
=
h ( t ) e i ft dt
2
1
T
=
(2.328)
−∞
1
T |
2
=
H ( f )
|
,
(2.329)
and the sample autocorrelation estimator ,
−∞ |
1
T
˜
2 e i f τ df .
φ gg (τ)
=
H ( f )
|
(2.330)
 
Search WWH ::




Custom Search