Biology Reference
In-Depth Information
Szulwach, K. E., Li, X., Li, Y., Song, C. X., Wu, H., Dai, Q., et al. (2011). 5-hmC-mediated
epigenetic dynamics during postnatal neurodevelopment and aging. Nature Neuroscience ,
14 , 1607-1616.
Szwagierczak, A., Bultmann, S., Schmidt, C. S., Spada, F., & Leonhardt, H. (2010). Sensitive
enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids
Research , 38 , e181.
Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., et al.
(2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian
DNA by MLL partner TET1. Science , 324 , 930-935.
Thomson, J. P., Skene, P. J., Selfridge, J., Clouaire, T., Guy, J., Webb, S., et al. (2010). CpG
islands influence chromatin structure via the CpG-binding protein Cfp1. Nature , 464 ,
1082-1086.
Tomizawa, S., Kobayashi, H., Watanabe, T., Andrews, S., Hata, K., Kelsey, G., et al. (2011).
Dynamic stage-specific changes in imprinted differentially methylated regions during
early mammalian development and prevalence of non-CpG methylation in oocytes.
Development , 138 , 811-820.
Valinluck, V., Tsai, H. H., Rogstad, D. K., Burdzy, A., Bird, A., & Sowers, L. C. (2004).
Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG
binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids
Research , 32 , 4100-4108.
Velasco, G., Hube, F., Rollin, J., Neuillet, D., Philippe, C., Bouzinba-Segard, H., et al.
(2010). Dnmt3b recruitment through E2F6 transcriptional repressor mediates germ-line
gene silencing in murine somatic tissues. Proceedings of the National Academy of Sciences of
the United States of America , 107 , 9281-9286.
Walsh, C. P., Chaillet, J. R., & Bestor, T. H. (1998). Transcription of IAP endogenous ret-
roviruses is constrained by cytosine methylation. Nature Genetics , 20 , 116-117.
Waterland, R. A., Kellermayer, R., Rached, M. T., Tatevian, N., Gomes, M. V., Zhang, J.,
et al. (2009). Epigenomic profiling indicates a role for DNA methylation in early post-
natal liver development. Human Molecular Genetics , 18 , 3026-3038.
Weber, M., Hellmann, I., Stadler, M. B., Ramos, L., Paabo, S., Rebhan, M., et al. (2007).
Distribution, silencing potential and evolutionary impact of promoter DNA methylation
in the human genome. Nature Genetics , 39 , 457-466.
Williams, K., Christensen, J., & Helin, K. (2012). DNA methylation: TET proteins-
guardians of CpG islands? EMBO Reports , 13 , 28-35.
Williams, K., Christensen, J., Pedersen, M. T., Johansen, J. V., Cloos, P. A., Rappsilber, J.,
et al. (2011). TET1 and hydroxymethylcytosine in transcription and DNA methylation
fidelity. Nature , 473 , 343-348.
Wood, A. J., Schulz, R., Woodfine, K., Koltowska, K., Beechey, C. V., Peters, J., et al.
(2008). Regulation of alternative polyadenylation by genomic imprinting. Genes and
Development , 22 , 1141-1146.
Wossidlo, M., Nakamura, T., Lepikhov, K., Marques, C. J., Zakhartchenko, V., Boiani, M.,
et al. (2011). 5-Hydroxymethylcytosine in the mammalian zygote is linked with epige-
netic reprogramming. Nature Communications , 2 , 241.
Wu, H., D'Alessio, A. C., Ito, S., Wang, Z., Cui, K., Zhao, K., et al. (2011). Genome-wide
analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcrip-
tional regulation in mouse embryonic stem cells. Genes and Development , 25 , 679-684.
Wu, H., D'Alessio, A. C., Ito, S., Xia, K., Wang, Z., Cui, K., et al. (2011). Dual functions of
Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature , 473 , 389-393.
Wu, H., & Zhang, Y. (2011). Mechanisms and functions of Tet protein-mediated
5-methylcytosine oxidation. Genes and Development , 25 , 2436-2452.
Search WWH ::




Custom Search