Biology Reference
In-Depth Information
Morgan, H. D., Santos, F., Green, K., Dean, W., & Reik, W. (2005). Epigenetic repro-
gramming in mammals. Human Molecular Genetics , 14 (Spec. No.), R47-R58.
Musselman, C. A., Lalonde, M. E., Cote, J., & Kutateladze, T. G. (2012). Perceiving the
epigenetic landscape through histone readers. Nature Structural and Molecular Biology ,
19 , 1218-1227.
Nakamura, T., Arai, Y., Umehara, H., Masuhara, M., Kimura, T., Taniguchi, H., et al.
(2006). PGC7/Stella protects against DNA demethylation in early embryogenesis.
Nature Cell Biology , 9 , 64-71.
Nakamura, T., Liu, Y. J., Nakashima, H., Umehara, H., Inoue, K., Matoba, S., et al. (2012).
PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early
embryos. Nature , 486 , 415-419.
Okamoto, I., Arnaud, D., Le Baccon, P., Otte, A. P., Disteche, C. M., Avner, P., et al.
(2005). Evidence for de novo imprinted X-chromosome inactivation independent of
meiotic inactivation in mice. Nature , 438 , 369-373.
Okamoto, I., Otte, A. P., Allis, C. D., Reinberg, D., &Heard, E. (2004). Epigenetic dynam-
ics of imprinted X inactivation during early mouse development. Science , 303 , 644-649.
Okamoto, I., Patrat, C., Thepot, D., Peynot, N., Fauque, P., Daniel, N., et al. (2011). Euthe-
rian mammals use diverse strategies to initiate X-chromosome inactivation during devel-
opment. Nature , 472 , 370-374.
Okano, M., Bell, D. W., Haber, D. A., & Li, E. (1999). DNAmethyltransferases Dnmt3a and
Dnmt3b are essential for de novo methylation and mammalian development. Cell , 99 ,
247-257.
Ooga, M., Inoue, A., Kageyama, S., Akiyama, T., Nagata, M., & Aoki, F. (2008). Changes in
H3K79 methylation during preimplantation development in mice. Biology of Reproduc-
tion , 78 , 413-424.
Ooi, S. K., & Bestor, T. H. (2008). The colorful history of active DNA demethylation. Cell ,
133 , 1145-1148.
Ooi, S. K., Qiu, C., Bernstein, E., Li, K., Jia, D., Yang, Z., et al. (2007). DNMT3L connects
unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature , 448 ,
714-717.
Otani, J., Nankumo, T., Arita, K., Inamoto, S., Ariyoshi, M., & Shirakawa, M. (2009).
Structural basis for recognition of H3K4 methylation status by the DNA methyl-
transferase 3A ATRX-DNMT3-DNMT3L domain. EMBO Reports , 10 , 1235-1241.
Pan, G., Tian, S., Nie, J., Yang, C., Ruotti, V., Wei, H., et al. (2007). Whole-genome anal-
ysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell
Stem Cell , 1 , 299-312.
Patrat, C., Okamoto, I., Diabangouaya, P., Vialon, V., Le Baccon, P., Chow, J., et al. (2009).
Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome
inactivation in mice. Proceedings of the National Academy of Sciences of the United States of
America , 106 , 5198-5203.
Popp, C., Dean, W., Feng, S., Cokus, S. J., Andrews, S., Pellegrini, M., et al. (2010).
Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected
by AID deficiency. Nature , 463 , 1101-1105.
Probst, A. V., & Almouzni, G. (2011). Heterochromatin establishment in the context of
genome-wide epigenetic reprogramming. Trends in Genetics , 27 , 177-185.
Proudhon, C., Duffie, R., Ajjan, S., Cowley, M., Iranzo, J., Carbajosa, G., et al. (2012). Pro-
tection against de novo methylation is instrumental in maintaining parent-of-origin
methylation inherited from the gametes. Molecular Cell , 47 , 909-920.
Puschendorf, M., Terranova, R., Boutsma, E., Mao, X., Isono, K., Brykczynska, U., et al.
(2008). PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin
in early mouse embryos. Nature Genetics , 40 , 411-420.
Search WWH ::




Custom Search