Chemistry Reference
In-Depth Information
The starting point resides in considering the de Broglie-Bohm electronic wave-
function (de Broglie and Vigier 1953 ; Bohm and Vigier 1954 ),
R ( x , t )exp i S ( x , t )
¯
BB ( x , t )
=
(11.1)
h
with the R -amplitude and S -phase factors given respectively as:
( x , t ) 2
= ρ 1 / 2 ( x )
R ( x , t )
=
(11.2a)
S ( x , t )
= px Et = S 0 Et
(11.2b)
in terms of electronic density ρ , momentum p , total energy E , and space-time ( x,t )
coordinates, without spin. In these conditions, since one perfumes the wavefunction
partial derivatives respecting space and time,
2 R
∂x 2
2 exp i
¯
∂S
∂x
h S
2 BB
∂x 2
2 i
¯
∂R
∂x
∂S
∂x +
h R 2 S
i
¯
R
¯
=
+
(11.3a)
h
∂x 2
h 2
∂R
∂t +
exp i
¯
h S
BB
∂t
h R ∂S
i
¯
=
(11.3b)
∂t
the conventional Schrödinger equation (Schrodinger 1926 )
h 2
2 m
2 BB
∂x 2
h BB
∂t
=− ¯
i
+
V BB
(11.4)
¯
takes the real and imaginary forms:
2 ∂R
∂x
∂x + R 2 S
∂R
∂t =−
1
2 m
∂S
(11.5a)
∂x 2
∂S
∂x
2
h 2
2 m
2 R
∂x 2
R ∂S
R
2 m
∂t =− ¯
+
+
VR
(11.5b)
that can be further arranged as:
R 2
m
∂R 2
∂t +
∂x
∂S
∂x
=
0
(11.6a)
∂S
∂x
2
h 2
2 m
2 R
∂x 2
∂S
∂t
1
R
1
2 m
¯
+
+
V
=
0
(11.6b)
Worth noting that the first Eq. ( 11.6a ) recovers in 3D coordinates the charge current
(j) conservation law,
∂ρ
∂t +∇
( R 2 /m ) S
j
=
0, j
=
(11.7a)
 
Search WWH ::




Custom Search