Chemistry Reference
In-Depth Information
Suppose that v is a vertex of a graph G , and let G i = G and v i =
v for all i
{
1,2, ... , d } . Using Theorem 7.2.2, we easily arrive at:
Corollary 7.2.3 The first Zagreb index of the bridge graph B 1 ,( d
2 times), is
given by:
M 1 ( B 1 )
=
dM 1 ( G )
+
4 υ ( d
1)
+
4 d
6,
where υ =
deg G ( v ) .
Theorem 7.2.4 If d
=
2, the second Zagreb index of the bridge graph B 1 ,isgiven
by:
M 2 ( B 1 )
=
M 2 ( G 1 )
+
M 2 ( G 2 )
+
α G 1 ( v 1 )
+
α G 2 ( v 2 )
+
( υ 1 +
1)( υ 2 +
1),
and for d
3,
d
d 1
d 1
=
+
+
+
+
M 2 ( B 1 )
M 2 ( G i )
α G 1 ( v 1 )
α G d ( v d )
2
α G i ( v i )
υ i υ i + 1
i
=
1
i
=
2
i
=
1
d
1
+
2( υ 1 +
υ d )
( υ 2 +
υ d 1 )
+
4
υ i +
4( d
2),
i = 2
where υ i =
deg G i ( v i ), for 1
i d .
Proof
For the case d
=
2, see the proof of Lemma 2.4 in (Ashrafi et al. 2011 ).
Now let d
3.
By definition of the second Zagreb index, M 2 ( B 1 )is
equal
to
the
sum
of
deg B 1 ( a )deg B 1 ( b ),
where
summation
is
taken
over
all
edges ab
E ( B 1 ).
From the definition of the bridge graph B 1 , E ( B 1 )
=
E ( G 1 ) E ( G 2 ) ... E ( G d ) {
v i v i + 1 |
1
i
d
1
}
. In order to compute
M 2 ( B 1 ), we partition our sum into the four sums as follows:
The first sum S 1 is taken over all edges ab
E ( G 1 ). Using Lemma 7.2.1,
S 1 =
deg B 1 ( a )deg B 1 ( b )
ab E ( G 1 )
=
deg G 1 ( a )deg G 1 ( b )
+
deg G 1 ( a )[deg G 1 ( v 1 )
+
1]
ab E ( G 1 ); a , b = v 1
ab E ( G 1 ); a V ( G 1 ), b = v 1
α G 1 ( v 1 ) .
The second sum S 2 is taken over all edges ab
=
M 2 ( G 1 )
+
E ( G d ). Using Lemma 7.2.1, we
obtain:
S 2 =
deg B 1 ( a )deg B 1 ( b )
ab E ( G d )
=
deg G d ( a )deg G d ( b )
+
deg G d ( a )[deg G d ( v d )
+
1]
ab E ( G d ); a , b = v d
ab E ( G d ); a V ( G d ), b = v d
=
M 2 ( G d )
+
α G d ( v d ) .
Search WWH ::




Custom Search