Biomedical Engineering Reference
In-Depth Information
104. Wang, X., et al.: Age-related changes in the collagen network and toughness of bone. Bone
31(1), 1-7 (2002)
105. Vajda, E.G., Bloebaum, R.D.: Age-related hypermineralization in the female proximal
human femur. Anat. Rec. 255(2), 202-211 (1999)
106. Russo, C.R., et al.: Structural adaptations to bone loss in aging men and women. Bone
38(1), 112-118 (2006)
107. Burnell,
J.M.,
et
al.:
Bone
matrix
and
mineral
abnormalities
in
postmenopausal
osteoporosis. Metabolism 31(11), 1113-1120 (1982)
108. Laval-Jeantet, A.M., et al.: Cortical bone senescence and mineral bone density of the
humerus. Calcif. Tissue Int. 35(3), 268-272 (1983)
109. McCalden, R.W., et al.: Age-related changes in the tensile properties of cortical bone. The
relative importance of changes in porosity, mineralization, and microstructure. J. Bone Joint
Surg. Am. 75(8), 1193-1205 (1993)
110. Cooper, D.M.L., et al.: Age-dependent change in the 3D structure of cortical porosity at the
human femoral midshaft. Bone 40(4), 957-965 (2007)
111. Simmons Jr, E.D., Pritzker, K.P., Grynpas, M.D.: Age-related changes in the human femoral
cortex. J. Orthop. Res.: Off. Publ. Orthop. Res. Soc. 9(2), 155-167 (1991)
112. Bailey, A.J., et al.: Age-related changes in the biochemical properties of human cancellous
bone collagen: relationship to bone strength. Calcif. Tissue Int. 65(3), 203-210 (1999)
113. Akkus, O., et al.: Aging of microstructural compartments in human compact bone. J. Bone
Miner. Res. 18(6), 1012-1019 (2003)
114. Cohen, L., Kitzes, R.: Infrared spectroscopy and magnesium content of bone mineral in
osteoporotic women. Isr. J. Med. Sci. 17(12), 1123-1125 (1981)
115. Gourion-Arsiquaud, S., et al.: Use of FTIR spectroscopic imaging to identify parameters
associated with fragility fracture. J. Bone Miner. Res.: Off. J. Am. Soc. Bone Miner. Res.
24(9), 1565-1571 (2009)
116. Paschalis, E.P., et al.: FTIR microspectroscopic analysis of human iliac crest biopsies from
untreated osteoporotic bone. Calcif. Tissue Int. 61(6), 487-492 (1997)
117. Nyman, J.S., et al.: Age-related effect on the concentration of collagen crosslinks in human
osteonal and interstitial bone tissue. Bone 39(6), 1210-1217 (2006)
118. Paschalis, E.P., et al.: Bone fragility and collagen cross-links. J. Bone Miner. Res.: Off.
J. Am. Soc. Bone Miner. Res. 19(12), 2000-2004 (2004)
119. Odetti, P., et al.: Role of advanced glycation end products in aging collagen. A scanning
force microscope study. Gerontology 44(4), 187-191 (1998)
120. Knott, L., Bailey, A.J.: Collagen cross-links in mineralizing tissues: a review of their
chemistry, function, and clinical relevance. Bone 22(3), 181-187 (1998)
121. Oxlund, H., Mosekilde, L., Ortoft, G.: Reduced concentration of collagen reducible cross
links in human trabecular bone with respect to age and osteoporosis. Bone 19(5), 479-484
(1996)
122. Danielsen, C.C., Mosekilde, L., Bollerslev, J.: Thermal stability of cortical bone collagen in
relation to age in normal individuals and in individuals with osteopetrosis. Bone 15(1),
91-96 (1994)
123. Walters, C., Eyre, D.R.: Collagen crosslinks in human dentin: increasing content of
hydroxypyridinium residues with age. Calcif. Tissue Int. 35(4-5), 401-405 (1983)
124. Nielsen, C.J., Bentley, J.P., Marshall, F.J.: Age-related changes in reducible crosslinks of
human dental pulp collagen. Arch. Oral Biol. 28(8), 759-764 (1983)
125. Odetti, P., et al.: Advanced glycation end products and bone loss during aging. Ann. N. Y.
Acad. Sci. 1043, 710-717 (2005)
126. Hein, G.E.: Glycation endproducts in osteoporosis-is there a pathophysiologic importance?
Clin. Chim. Acta 371(1-2), 32-36 (2006)
127. Zioupos, P.: The role of collagen in the declining mechanical properties of aging human
cortical bone. J. Biomed. Mater. Res. 45(2), 108-116 (1999)
128. Zioupos, P., Currey, J.D.: Changes in the stiffness, strength, and toughness of human
cortical bone with age. Bone 22(1), 57-66 (1998)
Search WWH ::




Custom Search