Biomedical Engineering Reference
In-Depth Information
55. Dempster, W.T., Liddicoat, R.T.: Compact bone as a non-isotropic material. Am. J. Anat.
91(3), 331-362 (1952)
56. Schaffler, M.B., Burr, D.B.: Stiffness of compact bone: effects of porosity and density.
J. Biomech. 21(1), 13-16 (1988)
57. Wachter, N.J., et al.: Correlation of bone mineral density with strength and microstructural
parameters of cortical bone in vitro. Bone 31(1), 90-95 (2002)
58. Snyder, S.M., Schneider, E.: Estimation of mechanical properties of cortical bone by
computed tomography. J. Orthop. Res.: Off. Publ. Orthop. Res. Soc. 9(3), 422-431 (1991)
59. Ko, R.: The tension test upon the compact substance of the long bones of human
extremities. J. Kyoto. Pref. Med. Univ. 53(4), 503-525 (1953)
60. Burstein, A., Reilly, D., Martens, M.: Aging of bone tissue: mechanical properties. J. Bone
Jt. Surg. Am. 58(1), 82-86 (1976)
61. Hoffler, C.E., et al.: Heterogeneity of bone lamellar-level elastic moduli. Bone 26(6),
603-609 (2000)
62. Reilly, D.T., Burstein, A.H., Frankel, V.H.: The elastic modulus for bone. J. Biomech. 7(3),
271-275 (1974)
63. Sedlin, E.D.: A rheologic model for cortical bone. A study of the physical properties of
human femoral samples. Acta Orthop. Scand. Suppl. 83, 1-77 (1965)
64. Sedlin, E.D., Hirsch, C.: Factors affecting the determination of the physical properties of
femoral cortical bone. Acta Orthop. Scand. 37(1), 29-48 (1966)
65. Wang, X., et al.: The role of collagen in determining bone mechanical properties. J. Orthop.
Res. 19(6), 1021-1026 (2001)
66. Nyman, J.S.: The influence of water removal on the strength and toughness of cortical bone.
J. Biomech. 39(5), 931-938 (2006)
67. Ascenzi, A., Bonucci, E.: The tensile properties of single osteons. Anat. Rec. 158(4),
375-386 (1967)
68. Ascenzi, A., Bonucci, E.: The compressive properties of single osteons. Anat. Rec. 161(3),
377-391 (1968)
69. Ascenzi, A., Baschieri, P., Benvenuti, A.: The torsional properties of single selected
osteons. J. Biomech. 27(7), 875-884 (1994)
70. Edward Hoffler, C., et al.: An application of nanoindentation technique to measure bone
tissue lamellae properties. J. Biomech. Eng. 127(7), 1046-1053 (2005)
71. Nyman, J.S., et al.: Age-related factors affecting the postyield energy dissipation of human
cortical bone. J. Orthop. Res.: Off. Publ. Orthop. Res. Soc. 25(5), 646-655 (2007)
72. Pidaparti, R.M., Wang, Q.Y., Burr, D.B.: Modeling fatigue damage evolution in bone.
Biomed. Mater. Eng. 11(2), 69-78 (2001)
73. Reilly, G.C., Currey, J.D.: The effects of damage and microcracking on the impact strength
of bone. J. Biomech. 33(3), 337-343 (2000)
74. Fondrk, M.T., Bahniuk, E.H., Davy, D.T.: A damage model for nonlinear tensile behavior of
cortical bone. J. Biomech. Eng. 121(5), 533-541 (1999)
75. Burr, D.B., et al.: Does microdamage accumulation affect the mechanical properties of
bone? J. Biomech. 31(4), 337-345 (1998)
76. Akkus, O., et al.: Relationship between damage accumulation and mechanical property
degradation in cortical bone: microcrack orientation is important. J. Biomed. Mater. Res.:
Part A 65(4), 482-488 (2003)
77. Ebacher, V., et al.: Strain redistribution and cracking behavior of human bone during
bending. Bone 40(5), 1265-1275 (2007)
78. Diab,
T.,
Vashishth,
D.:
Morphology,
localization
and
accumulation
of
in
vivo
microdamage in human cortical bone. Bone 40(3), 612-618 (2007)
79. Currey, J.D.: Tensile yield in compact bone is determined by strain, post-yield behaviour by
mineral content. J. Biomech. 37(4), 549-556 (2004)
80. Biewener, A.A.: Safety factors in bone strength. Calcif. Tissue Int. 53(1), S68-S74 (1993)
81. Niebur, G.L., et al.: High-resolution finite element models with tissue strength asymmetry
accurately predict failure of trabecular bone. J. Biomech. 33(12), 1575-1583 (2000)
Search WWH ::




Custom Search