Biomedical Engineering Reference
In-Depth Information
30. Roy, M.E., et al.: Correlations between osteocalcin content, degree of mineralization, and
mechanical properties of C. carpio rib bone. J. Biomed. Mater. Res. 54(4), 547-553 (2001)
31. Kavukcuoglu, N.B., Patterson-Buckendahl, P., Mann, A.B.: Effect of osteocalcin deficiency
on the nanomechanics and chemistry of mouse bones. J. Mech. Behav. Biomed. Mater. 2(4),
348-354 (2009)
32. Nyman, J.S., et al.: Measurements of mobile and bound water by nuclear magnetic
resonance correlate with mechanical properties of bone. Bone 42(1), 193-199 (2008)
33. Wilson, E.E., et al.: Three structural roles for water in bone observed by solid-state NMR.
Biophys. J. 90(10), 3722-3731 (2006)
34. Wilson, E.E., et al.: Highly ordered interstitial water observed in bone by nuclear magnetic
resonance. J. Bone Miner. Res.: Off. J. Am. Soc. Bone Miner. Res. 20(4), 625-634 (2005)
35. Nomura, S., et al.: Interaction of water with native collagen. Biopolymers 16(2), 231-246
(1977)
36. Pineri, M.H., Escoubes, M., Roche, G.: Water-collagen interactions: calorimetric and
mechanical experiments. Biopolymers 17(12), 2799-2815 (1978)
37. Giraud-Guille, M.M.: Twisted plywood architecture of collagen fibrils in human compact
bone osteons. Calcif. Tissue Int. 42(3), 167-180 (1988)
38. Weiner,
S.,
et
al.:
Rotated
plywood
structure
of
primary
lamellar
bone
in
the
rat:
orientations of the collagen fibril arrays. Bone 20(6), 509-514 (1997)
39. Weiner, S., Traub, W., Wagner, H.D.: Lamellar bone: structure-function relations. J. Struct.
Biol. 126(3), 241-255 (1999)
40. Weiner, S., Traub, W.: Organization of hydroxyapatite crystals within collagen fibrils.
FEBS Lett. 206(2), 262-266 (1986)
41. Katz, E.P., et al.: The structure of mineralized collagen fibrils. Connect. Tissue Res.
21(1-4), 149-154 (1989)
42. Sasaki, N., et al.: Atomic force microscopic studies on the structure of bovine femoral
cortical bone at the collagen fibril-mineral level. J. Mater. Sci. Mater. Med. 13(3), 333-337
(2002)
43. Lees, S.: Considerations regarding the structure of the mammalian mineralized osteoid from
viewpoint of the generalized packing model. Connect. Tissue Res. 16(4), 281-303 (1987)
44. Lee, D.D., Glimcher, M.J.: The three-dimensional spatial relationship between the collagen
fibrils and the inorganic calcium-phosphate crystals of pickerel and herring fish bone.
Connect. Tissue Res. 21(1-4), 247-257 (1989)
45. Balooch, M., et al.: Mechanical properties of mineralized collagen fibrils as influenced by
demineralization. J. Struct. Biol. 162(3), 404-410 (2008)
46. Jèager, I., Fratzl, P.: Mineralized collagen fibrils: a mechanical model with a staggered
arrangement of mineral particles. Biophys. J. 79(4), 1737-1746 (2000)
47. Pidaparti, R.M., et al.: Bone mineral lies mainly outside collagen fibrils: predictions of a
composite model for osteonal bone. J. Biomech. 29(7), 909-916 (1996)
48. Nikolov, S., Raabe, D.: Hierarchical modeling of the elastic properties of bone at submicron
scales: the role of extrafibrillar mineralization. Biophys. J. 94(11), 4220-4232 (2008)
49. Fantner, G.E., et al.: Sacrificial bonds and hidden length dissipate energy as mineralized
fibrils separate during bone fracture. Nat. Mater. 4(8), 612-616 (2005)
50. Wang, X., Nyman, J.S.: A novel approach to assess post-yield energy dissipation of bone in
tension. J. Biomech. 40(3), 674-677 (2007)
51. Jepsen, K.J., Davy, D.T.: Comparison of damage accumulation measures in human cortical
bone. J. Biomech. 30(9), 891-894 (1997)
52. Joo, W., Jepsen, K.J., Davy, D.T.: The effect of recovery time and test conditions on
viscoelastic measures of tensile damage in cortical bone. J. Biomech. 40(12), 2731-2737
(2007)
53. Espinoza Orías, A.A., et al.: Anatomic variation in the elastic anisotropy of cortical bone
tissue in the human femur. J. Mech. Behav. Biomed. Mater. 2(3), 255-263 (2009)
54. Reilly, D.T., Burstein, A.H.: The elastic and ultimate properties of compact bone tissue.
J. Biomech. 8(6), 393-405 (1975)
Search WWH ::




Custom Search