Biomedical Engineering Reference
In-Depth Information
91. Riggs, B.L., Melton, L.J.: Bone turnover matters: the raloxifene treatment paradox of
dramatic decreases in vertebral fractures without commensurate increases in bone density.
J. Bone Miner. Res. 17, 11-14 (2002)
92. Riggs, B.L., Melton 3rd, L.J., et al.: Population-based study of age and sex differences in
bone volumetric density, size, geometry, and structure at different skeletal sites. J. Bone
Miner. Res. 19, 1945-1954 (2004)
93. Robling,
A.,
Castillo,
A.,
et
al.:
Biomechanical
and
molecular
regulation
of
bone
remodeling. Annu. Rev. Biomed. Eng. 8, 455-498 (2006)
94. Roux, J.P., Wegrzyn, J., et al.: Contribution of trabecular and cortical components to
biomechanical behaviour of human vertebrae: an ex vivo study. J. Bone Miner. Res. 25,
356-3561 (2010)
95. Schaffler, M.B., Choi, K., et al.: Aging and matrix microdamage accumulation in human
compact bone. Bone 17, 521-525 (1995)
96. Schuit, S.C.E., van der Klift, M., et al.: Fracture incidence and association with bone
mineral density in elderly men and women: the Rotterdam study. Bone 34, 195-202 (2004)
97. Silva, M.J., Gibson, L.J.: Modeling the mechanical behavior of vertebral trabecular bone:
effects of age-related changes in microstructure. Bone 21, 191-199 (1997)
98. Simpson, E.K., Parkinson, I.H., et al.: Intervertebral disc disorganisation is related to
trabecular bone architecture in the lumbar spine. J. Bone Miner. Res. 16, 681-687 (2001)
99. Sornay-Rendu, E., Boutroy, S., et al.: Cortical and trabevular architecture are altered in
postmenopausal women with fractures. Osteoporos. Int. 20, 1291-1297 (2009)
100. Stauber, M., Muller, R.: Age-related changes in trabecular bone microstructures: global and
local morphometry. Osteoporos. Int. 17, 616-626 (2006)
101. Stauber, M., Muller, R.: Volumetric spatial decomposition of trabecular bone into rods and
plates—a new method for local bone morphometry. Bone 38, 475-484 (2006)
102. Stauber, M., Rapillard, L., et al.: Importance of individual rods and plates in the assessment
of bone quality and their contribution to the bone stiffness. J. Bone Miner. Res. 21, 586-595
(2006)
103. Szulc, P., Kaufman, J.M., et al.: Biochemical assessment of bone turnover in men.
Osteoporos. Int. 18, 1451-1461 (2007)
104. Thomsen, J.S., Ebbesen, E.N., et al.: Static histomorphometry of human iliac crest and
vertebral trabecular bone: a comparative study. Bone 30, 267-274 (2002)
105. Townsend,
P.R.,
Rose,
R.M.,
et
al.:
Buckling
studies
of
single
human
trabeculae.
J. Biomech. 8, 199-201 (1975)
106. Tsangari, H., Findlay, D.M., et al.: Structural and remodeling indices in the cancellous bone
of the proximal femur across adulthood. Bone 40(1), 211-217 (2006)
107. van der Linden, J.C., Homminga, J., et al.: Mechanical consequences of bone loss in
cancellous bone. J. Bone Miner. Res. 16, 457-465 (2001)
108. van Staa, T.P., Dennison, E.M., et al.: Epidemiology of fractures in England and Wales.
Bone 29, 517-522 (2001)
109. Wang, Q., Seeman, E.: Skeletal growth and peak bone strength. Best Pract. Res. Clin.
Endocrinol. Metab. 22, 687-700 (2008)
110. Wegrzyn, J., Roux, J.P., et al.: Role of trabecular microarchitecture and its heterogeneity
parameters in the mechanical behavior of ex vivo human L3 vertebrae. J. Bone Miner. Res.
25, 2324-2331 (2010)
111. Weinstein, R.S., Hutson, M.S.: Decreased trabecular width and increased trabecular spacing
contribute to bone loss with aging. Bone 8, 137-142 (1987)
112. Whitehouse, W.J.: The quantitative morphology of anisotropic trabecular bone. J. Microsc.
101, 153-168 (1974)
113. Yeni, Y.N., Zinno M.J., et al.: Variability of trabecular microstructure is age-, gender-, race-
and anatomic site-dependent and affects stiffness and stress distribution properties of human
vertebral cancellous bone. Bone 49, 886-894 (2011)
Search WWH ::




Custom Search