Biomedical Engineering Reference
In-Depth Information
References
1. Aaron, J.E., Makins, N.B., et al.: The microanatomy of trabecular bone loss in normal aging
men and women. Clin. Orthop. Relat. Res. 215, 260-271 (1987)
2. Aaron, J.E., Shore, P.A., et al.: Trabecular architecture in women and men of similar bone
mass with and without vertebral fracture: II. Three-dimensional histology. Bone 27,
277-282 (2000)
3. Amling, M., Herden, S., et al.: Polyostotic heterogeneity of the spine in osteoporosis.
Quantitative analysis and three-dimensional morphology. Bone Miner. 27, 193-208 (1994)
4. Amling, M., Herden, S., et al.: Heterogeneity of the skeleton: comparison of the trabecular
microarchitecture of the spine, the iliac crest, the femur and the calcaneus. J. Bone Miner.
Res. 11, 36-45 (1996)
5. Anonymous. World Medical Association Declaration of Helsinki. W. M. Association (2008)
6. Badiei, A., Bottema, M.J., et al.: Influence of orthogonal overload on human vertebral
trabecular bone mechanical properties. J. Bone Miner. Res. 22, 1690-1699 (2007)
7. Bevill, G., Eswaran, S.K., et al.: Influence of bone volume fraction and architecture on
computed large-deformation failure mechanisms in human trabecular bone. Bone 39,
1218-1225 (2006)
8. Biewener, A.A.: Safety factors in bone strength. Calcif. Tissue Int. 53(Suppl 1), 68-74
(1993)
9. Birkenhager-Frenkel, D.H., Courpron, P., et al.: Age-related changes in cancellous bone
structure. Bone Miner. 4, 197-216 (1988)
10. Borah, B., Defresne, T.E., et al.: Long-term risedronate treatment normalizes mineralization
and continues to preserve trabecular architecture: sequential triple biopsy studies with
micro-computed tomography. Bone 39, 345-352 (2006)
11. Borah, B., Ritman E.L., et al.: The effect of risedronate on bone mineralization as measured by
micro-computed tomography with synchrotron radiation: correlation to histomorphometric
indices of turnover. Bone 37, 1-9 (2005)
12. Bouxsein, M.L., Boyd, S.K., et al.: Guidlines for assessment of bone microsctructure in
rodents using micro-computed tomography. J. Bone Miner. Res. 25, 1468-1486 (2010)
13. Burr, D.B.: Targeted and nontargeted remodeling. Bone 30, 2-4 (2002)
14. Byers, S., Moore, A., et al.: Quantitative histomorphometric analysis of the human growth
plate from birth to adolescence. Bone 27, 495-501 (2000)
15. Callis, G.M.: Bone. Theory and practice of histological techniques. In: Bancroft, J.D.,
Gamble, M. (eds.) pp. 333-364. Churchill Livingstone, London (2008)
16. Carneiro, R.M., Prebehalla, L., et al.: Lactation and bone turnover: a conundrum of marked
bone loss in the setting of coupled bone turnover. J. Clin. Endocrinol. Metab. 95, 1767-1776
(2010)
17. Chappard, C., Peyrin, F., et al.: Subchondral bone micro-architectural alterations
in osteoarthritis: a synchrotron micro-computed tomography study. Osteoarthr. Cartil.
14, 215-223 (2006)
18. Chappard, D., Legrand E., et al.: Measuring trabecular bone architecture by image analysis
of histological sections. Microsc. Anal. 13, 23-25 (1997)
19. Chappard, D., Legrand, E., et al.: Altered trabecular architecture induced by corticosteroids:
a histomorphometric study. J. Bone Miner. Res. 5, 676-685 (1996)
20. Chavassieux, P., Meunier, P.J.: Histomorphometric approach of bone loss in men. Calcif.
Tissue Intern. 69, 209-213 (2001)
21. Compston, J.E.: Bone histomorphometry--the renaissance. BoneKEy-Osteovis. 1, 9-12
(2004)
22. Compston, J.E., Mellish, R.W.E., et al.: Structural mechanisms of trabecular bone loss in
man. Bone Miner. 6, 339-350 (1989)
23. Currey, J.: Minimum mass of cancellous bone. Bone: structure and mechanics J. Currey,
pp. 224-225. Princeton, Princeton University Press (2002)
Search WWH ::




Custom Search