Biomedical Engineering Reference
In-Depth Information
74. Pittenger, M.F., Mackay, A.M., et al.: Multilineage potential of adult human mesenchymal
stem cells. Science 284(5411), 143-147 (1999)
75. Plotkin, L.I., Aguirre, J.I., et al.: Bisphosphonates and estrogens inhibit osteocyte apoptosis
via distinct molecular mechanisms downstream of extracellular signal-regulated kinase
activation. J. Biol. Chem. 280(8), 7317-7325 (2005)
76. Quarto, R., Thomas, D., et al.: Bone progenitor cell deficits and the age-associated decline
in bone repair capacity. Calcif. Tissue Int. 56(2), 123-129 (1995)
77. Raab, D.M., Smith, E.L., et al.: Bone mechanical properties after exercise training in young
and old rats. J. Appl. Physiol. 68(1), 130-134 (1990)
78. Rath, A.L., Bonewald, L.F., et al.: Correlation of cell strain in single osteocytes with
intracellular calcium, but not intracellular nitric oxide, in response to fluid flow. J. Biomech.
43(8), 1560-1564 (2010)
79. Rawlinson, S.C., Pitsillides, A.A., et al.: Involvement of different ion channels in
osteoblasts' and osteocytes' early response to mechanical strain. Bone 19(6), 609-614
(1996)
80. Rickard, D., Harris, S.A., et al.: Estrogens and progestins. In: Bilezikian, J.P., Raisz, L.G.,
Rodan, G.A. (eds.) Principles of Bone Biology, vol. 1, pp. 655-676. Academic Press, San
Diego (2002)
81. Robling, A.G., Niziolek, P.J., et al.: Mechanical stimulation of bone in vivo reduces
osteocyte expression of Sost/sclerostin. J. Biol. Chem. 283(9), 5866-5875 (2008)
82. Robling, A.G., Turner, C.H.: Mechanical signaling for bone modeling and remodeling. Crit.
Rev. Eukaryot. Gene Expr. 19(4), 319-338 (2009)
83. Rosen, C.J.: Growth hormone, insulin-like growth factors, and the senescent skeleton:
Ponce de Leon's Fountain revisited? J. Cell. Biochem. 56(3), 348-356 (1994)
84. Rubin, C.T., Bain, S.D., et al.: Suppression of the osteogenic response in the aging skeleton.
Calcif. Tissue Int. 50(4), 306-313 (1992)
85. Rubin, J., Rubin, C., et al.: Molecular pathways mediating mechanical signaling in bone.
Gene 367, 1-16 (2006)
86. Rubin, J., Rubin, H., et al.: Constraints of experimental paradigms used to model the aging
skeleton. In: Rosen, C.J., Glowacki, J., Bilezikian, J.P. (eds.) The Aging Skeleton, pp. 27-
36. Academic Press, San Diego, (1999)
87. Ryder, K.D., Duncan, R.L.: Parathyroid hormone enhances fluid shear-induced [Ca 2+ i ]
signaling in osteoblastic cells through activation of mechanosensitive and voltage- sensitive
Ca 2+ channels. J. Bone Miner. Res. 16(2), 240-248 (2001)
88. Sakai, K., Mohtai, M., et al.: Fluid shear stress increases transforming growth factor beta 1
expression in human osteoblast-like cells: modulation by cation channel blockades. Calcif.
Tiss. Intl. 63(6), 515-520 (1998)
89. Sako, Y.: Effects of turbulent blood flow and hypertension on experimental atherosclerosis.
JAMA 179, 36-40 (1962)
90. Sawakami, K., Robling, A.G., et al.: The Wnt Co-receptor LRP5 is essential for skeletal
mechanotransduction but not for the anabolic bone response to parathyroid hormone
treatment. J. Biol. Chem. 281(33), 23698-23711 (2006)
91. Semenov, M., Tamai, K., et al.: SOST is a ligand for LRP5/LRP6 and a Wnt signaling
inhibitor. J. Biol. Chem. 280(29), 26770-26775 (2005)
92. Silbermann, M., Bar-Shira-Maymon, B., et al.: Long-term physical exercise retards
trabecular bone loss in lumbar vertebrae of aging female mice. Calcif. Tissue Int. 46(2),
80-93 (1990)
93. Speder, P., Noselli, S.: Left-right asymmetry: class I myosins show the direction. Curr.
Opin. Cell Biol. 19(1), 82-87 (2007)
94. Sterck, J.G., Klein-Nulend, J., et al.: Response of normal and osteoporotic human bone cells
to mechanical stress in vitro. Am. J. Physiol. 274(6 Pt 1), E1113-E1120 (1998)
95. Sutherland, M.J., Ware, S.M.: Disorders of left-right asymmetry: heterotaxy and situs
inversus. Am. J. Med. Genet. C Semin. Med. Genet. 151C(4), 307-317 (2009)
Search WWH ::




Custom Search