Agriculture Reference
In-Depth Information
g 1 d
þ g 2 d
þ g 3 d
MSE ʸ d , EBLUP
2
˅
2
˅
2
˅
˃
˃
˃
ð 11
:
39 Þ
where:
¼ ʳ d ˈ d < ˈ d ;
2
˅
g 1 d
˃
"
# 1
2 x d X
d
¼ 1 ʳ d
2
˅
x d x d = ˈ d þ ˃
2
˅
b d
g 2 d
˃
ð
Þ
x d ,
¼ ˈ
3 V
;
2
˅
2
d b d = ˈ i þ ˃
2
˅
b d
2
˅
g 3 d
˃
˃
is the asymptotic variance of an estimator of
and V
˃
2
˅
˃
2
˅
.
may be
) shows that the MSE ʸ d , EBLUP
2
˅
Note that the main term g 1 d (
˃
considerably smaller than MSE ʸ d if the weight
2
˅
ʳ d is small, or if
˃
is small
compared with
ˈ d . This means that the SAE process largely depends on the
availability of good auxiliary information for reducing the model variance
2
˅
˃
with respect to
ˈ d , as we would expect. Finally, Rao ( 1999 ) considered the
jackknife estimate of the MSE as a possible alternative.
The EBLUP estimates can be calculated in R using the sae package. We assume
that an auxiliary variable is available, as generated by the following code.
> set.seed(160964)
> auxFH < - 0.5*tapply(framepop$yobs,framepop$coddom,mean) +2*rnorm
+ (nrow(dsize))
> datFH < - cbind(domdir,dsize,auxFH)
> datFH$var < - datFH$se^2
The following instruction calculates the EBLUP estimates.
> domFH < - eblupFH(yobs ~ auxFH - 1, vardir ¼ var, data ¼ datFH, method ¼
+
"REML")
> domFH
$eblup
[,1]
11 77.28485
12 96.07419
13 74.66059
21 96.31286
22 119.19193
23 96.10808
31 78.57662
32 95.09622
33 82.04489
$fit
Search WWH ::




Custom Search