Biology Reference
In-Depth Information
31. Israelachvili, J. (2002) Electrostatic forces between surfaces in liquids, in
Intermolecular and Surface Forces , Academic Press, San Diego, pp. 213-259.
32.
Muller, D. J., Amrein, M., and Engel, A. (1997) Adsorption of biological molecules
to a solid support for scanning probe microscopy,
J. Struct. Biol., 119 , 172-188.
33.
Frederix, P. L., Bosshart, P. D., and Engel, A. (2009) Atomic force microscopy of
biological membranes, Biophys. J., 96 , 329-338.
34.
Preiner, J., Tang, J., Pastushenko, V., and Hinterdorfer, P. (2007) Higher harmonic
atomic force microscopy: Imaging of biological membranes in a liquid, Phys.
Rev. Lett., 99 , 046102.
35.
Sahin, O., Magonov, S., Su, C., Quate, C. F., and Solgaard, O. (2007) An atomic force
microscope tip designed to measure time-varying nanomechanical forces, Nat.
Nanotechnol., 2 , 507-514.
36.
London, E. (2005) How principles of domain formation in model membranes
may explain ambiguities concerning lipid raft formation in cells, Biochim.
Biophys. Acta, 1746 , 203-220.
37.
Brown, D. A. and London, E. (1997) Structure of detergent-resistant membrane
domains: does phase separation occur in biological membranes? Biochem.
Biophys. Res. Commun., 240 , 1-7.
38.
Giocondi, M. C., Boichot, S., Plenat, T., and Le Grimellec, C. C. (2004) Structural
diversity of sphingomyelin microdomains, Ultramicroscopy, 100 , 135-143.
39.
Chiantia, S., Kahya, N., Ries, J., and Schwille, P. (2006) Effects of ceramide on
liquid-ordered domains investigated by simultaneous AFM and FCS, Biophys. J.,
90 , 4500-4508.
40.
Johnston, I. and Johnston, L. J. (2006) Ceramide promotes restructuring of
model raft membranes, Langmuir, 22 , 11284-11289.
41.
Fidorra, M., Duelund, L., Leidy, C., Simonsen, A. C., and Bagatolli, L. A. (2006)
Absence of luid-ordered/luid-disordered phase coexistence in ceramide/
POPC mixtures containing cholesterol, Biophys. J., 90 , 4437-4451.
42.
Johnston, L. J. (2008) Sphingomyelinase generation of ceramide promotes
clustering of nanoscale domains in supported bilayer membranes, Biochim.
Biophys. Acta, 1778 , 185-197.
43.
Contreras, F. X., Villar, A. V., Alonso, A., Kolesnick, R. N., and Goni, F. M. (2003)
Sphingomyelinase activity causes transbilayer lipid translocation in model and
cell membranes, J. Biol. Chem., 278 , 37169-37174.
44.
Giocondi, M. C., Seantier, B., Dosset, P., Milhiet, P. E., and Le Grimellec, C. (2008)
Characterizing the interactions between GPI-anchored alkaline phosphatases
and membrane domains by AFM, Plugers Arch., 456 , 179-188.
45.
Milhiet, P., Giocondi, M., Baghdadi, O., Ronzon, F., Roux, B., and Le Grimellec, C.
(2002) Spontaneous insertion and partitioning of alkaline phosphatase into
model lipid rafts, EMBO Rep., 3 , 485-490.
46.
Saslowsky, D. E., Lawrence, J., Ren, X. Y., Brown, D. A., Henderson, R. M., and
Edwardson, J. M. (2002) Placental alkaline phosphatase is eficiently targeted
to rafts in supported lipid bilayers, J. Biol. Chem., 277 , 26966-26970.
 
Search WWH ::




Custom Search