Biomedical Engineering Reference
In-Depth Information
Cook, S. M., Schaffer, T. E., Chynoweth, K. M., Wigton, M., Simmonds, R. W., & Lang,
K. M. (2006). Practical implementation of dynamic methods for measuring atomic force
microscope cantilever spring constants. Nanotechnology , 17, 2135-2145.
Dazzi, A., Prazeres, R., Glotin, F., & Ortega, J. M. (2005). Local infrared microspectroscopy
with subwavelength spatial resolution with an atomic force microscope tip used as a pho-
tothermal sensor. Opt. Lett. , 30(18), 2388-2390.
Dazzi, A., Prazeres, R., Glotin, F., & Ortega, J. (2007). Analysis of nano-chemical map-
ping performed by an afm-based acousto-optic technique. Ultramicroscopy , 107(12), 1194-
1200.
Derjaguin, B. V., Muller, V. M., & Toporov, Y. P. (1975). Effect of contact deformations on
the adhesion of particles. J. Colloid Interface Sci. , 53, 314-326.
Domke, J. & Radmacher, M. (1998). Measuring the elastic properties of thin polymer films
with the atomic force microscope. Langmuir , 14, 3320-325.
Durig, U. (1999). Relations between interaction force and frequency shift in large-amplitude
dynamic force microscopy. Appl. Phys. Lett. , 75, 433-435.
Durig, U. (2000a). Extracting interaction forces and complementary observables in dynamic
probe microscopy. Appl. Phys. Lett. , 76, 1203-1205.
Durig, U. (2000b). Interaction sensing in dynamic force microscopy. N. J. of Phys. ,2,5.1-
5.12.
Ebeling, D., H olscher, H., & Anczykowski, B. (2006a). Increasing the Q-factor in the
constant-excitation mode of frequency-modulation atomic force microscopy in liquid. Appl.
Phys. Lett. , 89, 203511.
Ebeling, D., H olscher, H., Fuchs, H., Anczykowski, B., & Schwarz, U. D. (2006b). Imaging
of biomaterials in liquids: A comparison between conventional and Q-controlled amplitude
modulation (“tapping mode”) atomic force microscopy. Nanotechnology , 17, S221-S226.
Farell, A. A., Fukuma, T., Uchihashi, T., Kay, E. R., Bottari, G., Leigh, D. A., Yamada, H., &
Jarvis, S. P. (2005). Conservative and dissipative forces imaging of switchable rotaxanes
with frequency modulation atomic force microscopy. Phys.Rev.B , 72, 125430.
Fukuma, T., Ichii, T., Kobayashi, K., Yamadaa, H., & Matsushige, K. (2005a). True-molecular
resolution imaging by frequency modulation atomic force microscopy in various environ-
ments. Appl. Phys. Lett. , 86, 034103.
Fukuma, T., Kobayashi, K., Matsushige, K., & Yamada, H. (2005b). True molecular resolution
in liquid by frequency-modulation atomic force microscopy. Appl. Phys. Lett. , 86, 193108.
Garcia, R. & Perez, R. (2002). Dynamic atomic force microscopy methods. Surf. Sci. Rep. ,
47, 197-301.
Garcia, R., Gomez, C. J., Martinez, N. F., Patil, S., Dietz, C., & Magerle, R. (2006). Identifi-
cation of nanoscale dissipation processes by dynamic atomic force microscopy. Phys. Rev.
Lett. , 97, 016103.
Giessibl, F. J. (1997). Forces and frequency shifts in atomic-resolution dynamic-force
microscopy. Phys. Rev. B , 56(24), 16010-16015.
Giessibl, F.-J. (2001). A direct method to calculate tip-sample forces from frequency shifts in
frequency-modulation atomic force microscopy. Appl. Phys. Lett. , 78, 123-125.
Giessibl, F.-J. (2003). Advances in atomic force microscopy. Rev. Mod. Phys. , 75, 949-983.
Gleiche, M., Chi, L. F., & Fuchs, H. (2000).
Nanoscopic channel lattices with controlled
anisotropic wetting. Nature , 403, 173-175.
Gleyzes, P., Kuo, P. K., & Boccara, A. C. (1991). Bistable behavior of a vibrating tip near a
solid surface. Appl. Phys. Lett. , 58, 2989-2991.
Search WWH ::




Custom Search