Environmental Engineering Reference
In-Depth Information
2 c
D 0
α
V 0
α
c
3(1
α
)
=
c
z
k p ( c
c i R )
z 2
R
α
t
R
D i
2 c
D 0
α
V 0
α
c
3(1
α
)
c i
=
c
z
interstitial fluid equation
z 2
R
α
r
t
r
β
c i
D i 1
r
c i
ρ p
c ads
t =
r
r
t
2 c i
r ρ p
D i
β
2 D i
β
c i
c ads
=
c i
+
intra-particle equation.
r 2
r
β
t
t
Take Laplace transform of each equation and substitute:
R D i 1
R =
D 0
α
d 2 c
d z 2
V 0
α
d c
d z
3
α
α
d c i
d r
s c
0
s c i + ρ p
β
c ads
d 2 c i
d r 2
D i
β
2 D i
β
d c i
d r
+
=
0
r
s c i + ρ p
β
d 2 c i
d r 2
D i
β
2 D i
β
d c i
d r
k a c i
+
=
0
r
s
+
k a /
K a
1
r d 2 c i
d r 2
2 d c i
s
D i
+ ρ p
β
k a
b 2 r c i =
b 2
+
d r
0;
=
.
s
+
k a /
K a
Boundary conditions become:
c i ( r
=
0
,
s )
=
finite
r = 0 =
d c i
d r
0
.
To solve the equation for c i , we can use a variable substitution.
u
r
c i =
Let:
u
r
d c i
d r =
u
r 2
d 2 c i
d r 2
u
r
u
r 2
u
r 2 +
u
r
2 u
r 2
2 u
r 3
2 u
r 3 .
=
=
+
Substitute:
u
b 2 u
=
0
.
The solution for u is:
k 1 e br
k 2 e br
u
=
+
u
r =
k 1
r
k 2
r
b
r ( k 1 sinh br
e br
k 2 cosh br )
e br
+
=
+
(note that we have added a constant ( b ) and changed k to k ).
Search WWH ::




Custom Search