Geology Reference
In-Depth Information
Cundall PA (1988a) Computer simulations of dense sphere assemblies. In: Micromechanics of
granular materials; Proceedings of US/Japan seminar, Sendai-Zao, Japan, Oct 26-30 1987
Elsevier, Amsterdam, pp 113-123
Cundall PA (1988b) Formulation of a three-dimensional distinct element model. Part 1. A scheme
to detect and represent contacts in a system composed of many polyhedral blocks. Int J Rock
Mech Min Sci 25:107-116
Cundall PA (1989) Numerical experiments on localization in frictional materials. Ingenieur-
Archiv 59:148-159
Curie P (1894) Sur la symétrie dans les phénomènes physiques, symétrie d'un champ electrique
et d'un champ magnetique. J de Phys 3:393-415
de Josselin de Jong G (1959) Statics and Kinematics of the Failable zone of a Granular Material
(thesis), Delft, Uitgeverij Waltman
de Josselin de Jong G (1971) The double sliding, free rotating model for granular assemblies,
Géotechnique 21:155-163
de Josselin de Jong, G, 1977, Mathematical elaboration of the double sliding, free rotating model,
Archiv Mech, 29, 561-591
Deresiewicz H (1958) Mechanics of granular matter. In: Advances in applied m,echanics.
Academic, London, pp 233-306
Dieterich JH (1972) Time-dependent friction in rocks. J Geophys Res 77:3690-3697
Dieterich JH (1978) Time-dependent friction and the mechanism of stick-slip. Pure Appl
Geophys 116:790-806
Dieterich JH (1979) Modeling of rock friction. 1. Experimental results and constitutive equations.
J Geophys Res 84:2161-2168
Dieterich JH (1981) Constitutive properties of faults with simulated gouge. In: Carter NL,
Friedman M, Logan JM, Stearns DW (eds) Mechanical behavior of crustal rocks The Handin
volume. American Geophysical Union, Washington, pp 103-120
Dieterich JH, Conrad G (1984) Effect of humidity on time- and velocity-dependent friction in
rocks. J Geophys Res 89:4196-4202
Drescher A, de Josselin de Jong G (1972) Photoelastic verification of a mechanical model for the
flow of a granular material. J Mech Phys Solids 20: 337-351
Drescher A (1976) An experimental investigation of flow rules for granular materials by means of
optically sensitive glass particles. Géotechnique 26:591-601
Duclos R (2004) Direct observation of grain rearrangement during superplastic creep of a fine-
grained zirconia. J European Ceramic Soc 24:3103-3110
Edington JW, Melton KN (1976) Superplasticity. Progress in materials science. Pergamon Press,
Oxford, pp 61-170
Etheridge MA, Wilkie JG (1979) Grain size reduction, grain boundary sliding and the flow
strength of mylonites. Tectonophysics 58:159-178
Evans
B,
Rowan
M,
Brace
WF
(1980)
Grain-size
sensitive
deformation
of
a
stretched
conglomerate from Plymouth. Vermont, J Structural Geol 2:411-424
Feda J (1982) Mechanics of particulate materials: the principles. Elsevier, Amsterdam, 447 pp
Field WG (1963) Towards the statistical definition of a granular mass. In: Proceedings 4th
Auststalia and New Zealand conference on soil mechanics, 143-148
Gilotti JA, Hull JM (1990) Phenomenological superplasticity in rocks. In: Knipe RJ, Rutter EH
(eds) Deformation mechanisms, rheology and tectonics. The Geological Society, London,
pp 229-240
Guéguen Y, Boullier AM (1976) Evidence of superplasticity in mantle peridotites. In: Stens, RGJ
(ed) The physics and chemistry of minerals and rocks. NATO Institute, Newcastle upon Tyne,
April 1974, Wiley, London, pp 19-33
Hadizadeh J, Rutter EH (1982) Experimental study of cataclastic deformation in quartzite. In:
Issues in rock mechanics. 23rd Symposium on Rock mechanics. AIME, New York, pp 372-379
Hadizadeh J, Rutter EH (1983) The low temperature brittle-ductile transition in quartzite and the
occurrence of cataclastic flow in nature. Geol Rundschau 72:493-509
Search WWH ::




Custom Search