Environmental Engineering Reference
In-Depth Information
35. Lima, M. P., Fazzio, A., and Silva, A. J. R. da (2009) Edge effects in bilayer
graphene nanoribbons: ab initio total-energy density functional theory
calculations, Phys. Rev. B , 79 ,153401.
36. Yang, L., Cohen, M. L., and Louie, S. G. (2008) Magnetic edge-state
excitons in zigzag graphene nanoribbons, Phys. Rev. Lett. , 101 ,186401.
37. Bermudez, A., Patane, D., Amico, L., and Martin-Delgado, M. A. (2009)
Topology-induced anomalous defect production by crossing a quantum
critical point, Phys. Rev. Lett. , 102 ,135702.
38. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiHola, A., and
Haak,J.R.(1984)Moleculardynamicswithcouplingtoanexternalbath,
J. Chem. Phys. , 81 ,3684.
39. Hunenberger, P. (2005) Thermostat algorithms for molecular dynamics
simulations, Adv. Polymer. Sci. , 173 ,105-147.
40. Cheng, A. L., and Merz, K. M. (1996) Application of the Nose-Hoover
chain algorithm to the study of protein dynamics, J. Phys. Chem. , 100 ,
1927-1937.
41. Golo, V. L., and Shaitan, K. V. (2002) Dynamic attractor for Berendsen's
thermostat and the slow dynamics, Biofizika , 47 ,611-617.
42. Mor, A., Ziv, G., and Levy, Y. (2008) Simulations of proteins with
inhomogeneousdegreesoffreedom:theeffectofthermostats, J.Comput.
Chem. , 29 ,1992-1998.
43. Rosta, E., Buchete, N. V., and Hummer, G. (2009) Thermostat artifacts
in replica exchange molecular dynamics simulations, J. Chem. Theory
Comput. , 5 ,1393-1399.
44. Wu, G., and Li, B. (2007) Thermal rectification in carbon nanotube
intramolecularjunctions:moleculardynamicscalculations, Phys.Rev.B ,
76 ,085424.
45. Yang,N.,Zhang,G.,andLi,B.(2009)Thermalrectificationinasymmetric
graphene ribbons, Appl. Phys. Lett. , 95 ,033107.
46. Li,B.,Wang,L.,andCasati,G.(2004)Thermaldiode:rectificationofheat
flux, Phys. Rev. Lett. , 93 ,184301.
47. Chang, C. W., Okawa, D., Majumdar, A., and Zettl, A. (2006) Solid-state
thermal rectifier, Science , 314 ,1121-1124.
48. Zhang,G.,andLi,B.(2005)Thermalconductivityofnanotubesrevisited:
effects of chirality, isotope impurity, tube length, and temperature, J.
Chem. Phys. , 123 ,114714.
49. Chang, C. W., Okawa, D., Garcia, H., Majumdar, A., and Zettl, A. (2008)
Breakdown of Fourier's law in nanotube thermal conductors, Phys. Rev.
Lett. , 101 ,075903.
 
Search WWH ::




Custom Search