Environmental Engineering Reference
In-Depth Information
tional modes mainly because of the significant effect of phonon-
surface defect scattering. Our study highlights the importance
of surface modification in the thermal conductivity of SiNWs. The
surface atoms have a much more dominant effect on the overall
thermal-transfer properties because of the large surface-to-volume
ratio, especially for thin SiNWs. Surface modification can become an
effective method of tuning the thermal conductivity of thin SiNWs.
This finding will be of great interest to both scientific researchers
and technologists, as they can serve as highly useful references for
Si-basedTE applications.
References
1. Cui, Y., and Lieber, C. M., Jr. (2001) Functional nanoscale electronic
devices assembled using silicon nanowire building blocks, Science ,
291 (5505),851-853.
2. Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C., and Lieber, C. M.,
Jr. (2002) Growth of nanowire superlattice structures for nanoscale
photonicsand electronics, Nature , 415 ,617-620.
3. Guo, C. S., Luo, L. B., Yuan, G. D., Yang, X. B., Zhang, R. Q., Zhang, W. J., and
Lee, S. T., Jr. (2009) Surface passivation and transfer doping of silicon
nanowires, Angew. Chem. Int. Ed. , 48 (52),9896-9900.
4. Hochbaum, A. I., Chen, R., Delgado, R. D., Liang, W., Garnett, E. C., Najar-
ian, M., Majumdar, A., and Yang, P., Jr. (2008) Enhanced thermoelectric
performance of rough silicon nanowires, Nature , 451 (7175),163-167.
5. Boukai, A. I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard III, W. A.,
and Heath, J. R., Jr. (2008) Silicon nanowires as e cient thermoelectric
materials, Nature , 451 (7175),168-171.
6. Hicks, L. D., and Dresselhaus, M. S., Jr. (1993) Thermoelectric figure
of merit of a one-dimensional conductor, Phys. Rev. B , 47 (24), 16631-
16634.
7. Li,D.,Wu,Y.,Kim,P.,Shi,L.,Yang,P.,andMaujmdarA.,Jr.(2003)Thermal
conductivity of individual silicon nanowires, Appl. Phys. Lett. , 83 (14),
2934.
8. Chantrenne, P., Barrat, J. L., Blase, X., and Gale, J. D., Jr. (2005) An
analytical model for the thermal conductivity of silicon nanostructures,
J. Appl. Phys. , 97 (10),104318.
 
Search WWH ::




Custom Search