Environmental Engineering Reference
In-Depth Information
In conclusion, we first demonstrate that the NEGF approach is
a very powerful theoretical tool in the study of quantum thermal
transport. Then we apply the approach to understand thermal-
transport properties of nanostructures, focusing on graphene-
related transport systems. The study on thermal transport in GNRs
reveals that the extremely high thermal conductivity of graphene is
causedbytheextraordinarylongphononmeanfreepath.Moreover,
the calculations find that the thermal-transport ability of GNRs can
bestronglydependentontheedgeshape,suggestingtotunethermal
conduction by edge control. Furthermore, using graphene-based
nanodevices as examples, we apply the NEGF method to explore
thermal-transport phenomena in realistic transport systems. Such
studies can guide future applications of thermal management
and/or thermoelectricity.
References
1. Hone, J., Whitney, M., Piskoti, C., and Zettl, A. (1999) Thermal
conductivity of single-walled carbon nanotubes, Phys. Rev. B , 59 (4),
R2514.
2. Tien, C. L., Majumdar, A., and Gerner, F. M. (1998) Microscale Energy
Transport (Taylor &Francis, Washington, DC).
3. Kittel,C. (1996) Introduction to Solid State Physics (Wiley, New York).
4. Datta,S.(1995) Electronic Transport in Mesoscopic Systems ,(Cambridge,
New York).
5. Rego, L. G. C. and Kirczenow, G. (1998) Quantized thermal conductance
of dielectric quantum wires, Phys. Rev. Lett. , 81 (1),232.
6. Schwab, K., Henriksen, E. A., Worlock, J. M., and Roukes, M. L.
(2000) Measurement of the quantum of thermal conductance, Nature ,
404 (6781),974.
7. Haug, H. and Jauho, A.-P. (1996) Quantum Kinetics in Transport and
Optics of Semiconductors (Springer, Berlin).
8. Kadanoff, L. P. and Baym, G. (1962) Quantum Statistical Mechanics ,New
York.
9. Wang, J. S., Wang, J., and Lu, J. T. (2008) Quantum thermal transport in
nanostructures, The European Physical Journal B - Condensed Matter and
Complex Systems , 62 (4),381.
 
Search WWH ::




Custom Search