Digital Signal Processing Reference
In-Depth Information
11.8. A function y [ n ] has the unilateral z -transform
z 3
Y(z) =
+ 5z - 9 .
z 3
- 3z 2
(a) Find the z -transform of
(b) Find the z -transform of
(c) Evaluate y [ n ] for
y 1 [n] = y[n - 3]u[n - 3].
y 2 [n] = y[n + 3]u[n].
n = 0
and 3,
y[n - 3]u[n - 3]
for
n = 3,
and
y[n + 3]u[n]
for
by expanding the appropriate z -transform into power series.
(d) Are the values found in part (c) consistent? Explain why.
n = 0
f[n] = a n u[n],
11.9. Given
find the z -transforms of the following:
(a) f[ n /7]
(b)
; verify your result by a power series expansion
f[n - 7]u[n - 7]
(c)
f[n + 3]u[n]
; verify your result by a power series expansion
b 2n f[n]
(d)
; using two different procedures.
11.10. (a) Given the following unilateral z -transforms, find the inverse z -transform of each
function:
0.5z 2
(z - 1)(z - 0.5)
(i)
X(z) =
0.5z
(z - 1)(z - 0.5)
(ii)
X(z) =
0.5
(z - 1)(z - 0.5)
(iii)
X(z) =
z
(iv)
X(z) =
z 2
- z + 1
(b) Verify the partial-fraction expansions in part (a) using MATLAB.
(c) Evaluate each x [ n ] in part (a) for the first three nonzero values.
(d) Verify the results in part (c) by expanding each
X(z)
in part (a) into a power series
using long division.
(e) Use the final-value property to evaluate for each function in part (a).
(f) Check the results of part (e), using each x [ n ] found in part (a).
(g) Use the initial-value property to evaluate x [0] for each function in part (a).
(h) Check the results of part (g), using each x [ n ] found in part (a).
x[ q ]
11.11. Consider the transforms from Problem 11.10.
0.5z 2
(z - 1)(z - 0.5) ;
X 1 (z) =
0.5z
(z - 1)(z - 0.5) ;
X 2 (z) =
0.5
(z - 1)(z - 0.5) .
X 3 (z) =
 
Search WWH ::




Custom Search