Digital Signal Processing Reference
In-Depth Information
and
Ae ju
2
A
2 l u Q A = 2 ƒ k 1 ƒ ;
k 1 =
=
u = arg k 1 .
(11.50)
Thus, we calculate and from the poles, and A and from the partial-fraction
expansion. We can then express the inverse transform as the sinusoid of (11.47). An
illustrative example is given next.
©
Æ
u
Inverse z -transform with complex poles
EXAMPLE 11.11
We find the inverse z -transform of the function
-2.753z
-2.753z
(z - 0.550 - j0.550)(z - 0.550 + j0.550)
Y(z) =
=
z 2
- 1.101z + 0.6065
k * z
z - 0.550 + j0.550 .
k 1 z
z - 0.550 - j0.550 +
=
Dividing both sides by z , we calculate
k 1 :
-2.753
(z - 0.550 - j0.550)(z - 0.550 + j0.550)
B
R
k 1 = (z - 0.550 - j0.550)
z= 0.550 + j0.550
-2.753
2(j0.550) = 2.50 l 90° .
=
From (11.49) and (11.50),
p 1 = 0.550 + j0.550 = 0.7778 l 45° ,
p
4 ,
©=ln ƒp 1 ƒ = ln (0.7778) =-0.251;
Æ=arg p 1 =
and
p
2 .
A = 2 ƒ k 1 ƒ = 2(2.50) = 5;
u = arg k 1 =
Hence, from (11.47),
p
4 n +
p
2
y[n] = Ae ©n cos(Æn + u) = 5e -0.251n cos
¢
.
We can verify this result by finding the z -transform of this function, using Table 11.2. The
partial-fraction expansion can be verified with the following MATLAB program:
n = [0 0 -2.753];
d = [1 -1.101 0.6065];
[r,p,k]=residue(n,d)
result: r=0+2.5001i 0-2.5001i
p=0.5505+0.5509i 0.5505-0.5509i
 
Search WWH ::




Custom Search