Geoscience Reference
In-Depth Information
Bobee, B. and Ashkar, F. (1991). The Gamma Distribution and Derived Distributions Applied in
Hydrology . Littleton, CO: Water Resour. Press.
Chow, V. T. (1954). The log-probability law and its engineering applications. Proc. Amer. Soc. Civil
Eng., Hydraul. Div. , 80 , 536.1-536.25.
Chowdhury, J. U. and Stedinger, J. R. (1991). Confidence intervals for design floods with estimated
skew coefficient. J. Hydraul. Eng. , ASCE , 117 , 811-831.
Cohn, T. A., Lane, W. L. and Baier, W. G. (1997). An algorithm for computing moments-based flood
quantile estimates when historical flood information is available. Water Resour. Res. , 33 ,
2089-2096.
Cohn, T. A., Lane, W. L. and Stedinger, J. R. (2001). Confidence intervals for Expected Moments
Algorithm flood quantile estimates. Water Resour. Res. , 37 , 1695-1706.
Cruff, R. W. and Rantz, S. E. (1965). A comparison of methods used in flood-frequency studies for
coastal basins in California , Geol. Survey Water-Supply Paper 1580-E. Washington, DC: US
Department of the Interior.
Cunnane, C. (1978). Unbiased plotting positions-areview. J. Hydrol. , 37 , 205-222.
Dalrymple, T. (1960). Flood-frequency analyses , Geol. Survey Water-Supply Paper 1543-A.
Washington, DC: US Department of the Interior.
Foster, H. A. (1924). Theoretical frequency curves. Trans. Amer. Soc. Civil Eng. , 89 , 142-203.
Fuller, W. E. (1914). Flood flows . Trans. Amer. Soc. Civil Eng. , 77 , 564-617, 676-694.
Gumbel, E. J. (1954a). Statistical Theory of Extremes and Some Practical Applications , Appl. Math.
Ser. 33. Washington, DC: National Bureau of Standards.
(1954b). Statistical theory of droughts. Proc. Amer. Soc. Civil Engrs., Hydraulics Div. , 80 ,
439.1-439.19.
(1958). Statistics of Extremes . New York: Columbia University Press.
Gupta, V. K., Mesa, O. J. and Dawdy, D. R. (1994). Multiscaling theory of flood peaks: Regional
quantile analysis. Water Resour. Res. , 30 , 3405-3421.
Hardison, C. H. (1974). Generalized skew coefficients of annual floods in the United States and their
application. Water Resour. Res. , 10 , 745-752.
Hazen, A. (1914a). Discussion on flood flows. Trans. Amer. Soc. Civil Eng. , 77 , 626-632.
(1914b). The storage to be provided in impounding reservoirs for municipal water supply. Trans.
Amer. Soc. Civil Eng. , 77 , 1539-1659.
(1930). Flood Flows, A Study of Frequencies and Magnitudes . New York: John Wiley, Inc.
Hershfield, D. M. (1970a). Generalizing dry-day frequency data. J. Amer. Water Works Assoc. , 62 ,
51-54.
(1970b). A comparison of conditional and unconditional probabilities for wet- and dry-day
sequences. J. Appl. Meteor. , 9 , 825-827.
(1971). The frequency of dry periods in Maryland. Chesapeake Sci. , 12 , 72-84.
Hirsch, R. M. and Stedinger, J. R. (1987). Plotting positions for historical floods and their precision.
Water Resour. Res. , 23 , 715-727.
Hodgkins, G. (1999). Estimating the magnitude of peak flows for streams in Maine for selected
recurrence intervals , Water-Resour. Investig. Rept. 99-4008, Augusta, ME: US Department of
the Interior, US Geol. Survey. (http://me.water.usgs.gov/99-4008.pdf)
Hosking, J. R. M. and Wallis, J. R. (1997). Regional Frequency Analysis: An Approach Based on
L-Moments. Cambridge: Cambridge University Press.
Horton, R. E. (1914). Discussion on flood flows. Trans. Amer. Soc. Civil Eng. , 77 , 663-670.
Interagency Advisory Committee on Water Data (1982). Guidelines for Determining Flood Flow
Frequency , Bulletin 17B. Reston, VA: US Department of the Interior, Geol. Survey, Office of
Water Data Coordination.
Search WWH ::




Custom Search