Civil Engineering Reference
In-Depth Information
Calculate the longitudinal steel stress f :
f cr
f y
1 . 5
2
1 . 5
1
ρ
1
059
446
.
Equation 18 e
B
=
=
=
0
.
0175
0
.
01789
.
5
f y =
Equation 18 d
(0
.
93
2 B ) f y =
(0
.
93
2
×
0
.
0175) 446
.
5
=
399
.
6MPa
ε y =
f y /
E s =
399
.
6
/
200 000
=
0
.
00200
<
ε =
¯
0
.
004534
Notice that the longitudinal steel has yielded.
Equation 18 b
f =
(0
.
91
2 B ) f y +
(0
.
02
+
0
.
25 B ) E ¯
ε
=
(0
.
91
2
×
0
.
0175) 446
.
5
+
(0
.
02
+
0
.
25
×
0
.
0175) 200 000 (0
.
004534)
=
390
.
7
+
22
.
10
=
412
.
8MPa
Calculate the transverse steel stress f t :
f cr
f ty
1 . 5
2
1 . 5
1
ρ t
1
059
462
.
Equation 19 e
B
=
=
=
0
.
0249
0
.
01193
.
6
f y =
Equation 19 d
(0
.
93
2 B ) f ty =
(0
.
93
2
×
0
.
0249) 462
.
6
=
407
.
2MPa
ε y =
f y /
E s =
407
.
2
/
192 400
=
0
.
00212
<
ε t =
¯
0
.
006677
Notice that the transverse steel strain has also yielded and its strain (¯
ε t ) is greater than the
longitudinal steel strain (¯
ε ).
Equation 19 b
f t
=
(0
.
91
2 B ) f ty +
(0
.
02
+
0
.
25B) E t ¯
ε t
=
(0
.
91
2
×
0
.
0249) 462
.
6
+
(0
.
02
+
0
.
25
×
0
.
0249) 192 400 (0
.
006677)
=
397
.
9
+
33
.
70
=
431
.
6MPa
Check equilibrium equations 20 and 21 :
(
ρ f + ρ t f t ) 1 =
0
.
01789(412
.
5)
+
0
.
01193(431
.
6)
=
7
.
385
+
5
.
149
=
12
.
53 MPa
(
ρ f ρ t f t ) 1 =
0
.
01789(412
.
5)
0
.
01193(431
.
6)
=
7
.
385
5
.
149
=
2
.
236 MPa
σ
2
c
1
c
Equation 20
(
ρ f + ρ t f t ) 2 =
(
σ + σ t )
+ σ
=
(0
+
0)
(0
.
2785
12
.
81)
=
12
.
53 MPa
12
.
53 MPa OK
Search WWH ::




Custom Search