Civil Engineering Reference
In-Depth Information
Solve the longitudinal steel strain
ε :
ε r ε d
σ d
0
.
00385
+
0
.
0002
10 3 /MPa
=
=
0
.
545
×
7
.
43
σ ρ f ρ p f p
ε = ε r + ε r ε d
σ d
Equation 13
10 3
=
0
.
00385
+
0
.
545
×
(3
.
44
0
.
012 f
0
.
003 f p )
Assume f =
E s ε =
200
×
10 3
ε
before yielding
10 3 (0
f p =
E ps (
ε dec + ε s )
=
200
×
.
005
+ ε ) before elastic limit
Then
ε +
1.308
ε +
0.327
ε =
0.00385
+
0.00188
0.00164
0
.
00409
2
ε =
=
0
.
00155
<
0
.
00207(
ε y )OK
.
635
(
ε ps at 0
.
7 f pu )
=
0
.
7(1862)
/
200 000
=
0
.
00652
(
ε ps at 0.7 f pu )
ε dec =
0.00652
0.005
=
0.00152
ε =
0
.
00155
0
.
00152 OK
Solve the transverse steel strain
ε t :
σ t ρ t f t ρ tp f tp
ε t = ε r + ε r ε d
σ d
Equation 14
10 3
=
.
+
.
×
.
.
012 f t
0
00385
0
545
(1
72
0
0)
Assume f t =
200
×
10 3
ε t before yielding
Then
ε t +
1.308
ε t =
0.00385
+
0.000938
.
0
00479
2
ε t =
=
0
.
00208
0
.
00207 (
ε y )OK
.
308
The tensile strain
ε r can now be checked:
Equation 15
ε r = ε + ε t ε d =
0
.
00155
+
0
.
00208
+
0
.
0002
=
0
.
00383
0
.
00385 (assumed) OK
Now that the strains
ε d ,
ε r ,
ε , and
ε t and the stress,
σ d , are calculated from the trial-and-
error process, we can determine the angle
α r , the shear stress
τ t and the shear strain
γ t :
ε t ε d
ε ε d =
0
.
00208
+
0
.
0002
Equation 16 tan 2
α r =
0002 =
1
.
303
0
.
00155
+
0
.
tan
α r
=
1
.
1414
78
56
α r
=
48
.
2
α r =
97
.
Equation 3
τ t
=
(
σ d )sin
α r cos
α r =
(7
.
43)(0
.
752)(0
.
659)
=
3
.
68 MPa
γ t
2 =
Equation 6
(
ε r ε d )sin
α r cos
α r =
(0
.
00383
+
0
.
0002)(0
.
752)(0
.
659)
=
0
.
00200
Search WWH ::




Custom Search