Civil Engineering Reference
In-Depth Information
Figure 4.12
Reserved transformation
sin
α 1 in Equation (4.7) results in:
=
c
1
σ
σ
cos 2
α 1
sin 2
α 1
α 1 cos
α 1
2sin
c
2
σ
t
sin 2
α 1
cos 2
α 1
2sin
α 1 cos
α 1
σ
(4.49)
sin
α 1 cos
α 1
sin
α 1 cos
α 1
(cos 2
α 1
sin 2
α 1 )
c
t
c
12
τ
τ
3 matrix in Equation (4.49) is the inverse transformation matrix [ T ] 1
This 3
×
for trans-
forming a set of stresses in the 1-2 coordinate to a set of stresses in the
t coordinate. Using
the tensor notation, Equation (4.49) becomes:
σ
12 (4.50)
Substituting Equation (4.49) into Equations (4.46)-(4.48) gives the three equilibrium equa-
tions for fixed angle theories as:
σ = σ
t =
[ T ] 1 σ
c
1 cos 2
c
2 sin 2
c
c
12 2sin
α 1 + σ
α 1 τ
α 1 cos
α 1 + ρ f
(4.51)
c
1
sin 2
c
2
cos 2
c
12 2sin
σ t
= σ
α 1 + σ
α 1 + τ
α 1 cos
α 1 + ρ t f t
(4.52)
c
1
c
12 (cos 2
c
sin 2
τ t
=
(
σ
σ
2 )sin
α 1 cos
α 1 + τ
α 1
α 1 )
(4.53)
Similarly, in Section 4.2.1, Equation (4.37), we derived the same matrix [ T ] that transforms
a set of strains in the
t coordinate (
ε ,
ε t and
γ t ) into a set of strains in the 1-2 coordinate
(
γ 12 ). Using the same process as in stress transformation, we can reverse the process,
as shown in Figure 4.12, and use the reverse transformation matrix [ T ] 1 to transform a set of
strains in the 1-2 coordinate (
ε 1 ,
ε 2 and
ε 1 ,
ε 2 and
γ 12 ) into a set of strains in the
t coordinate (
ε ,
ε t
and
γ t ) as follows:
=
ε
ε t
γ t
2
ε 1
ε 2
γ 12
2
sin 2
cos 2
α 1
α 1
2sin
α 1 cos
α 1
sin 2
cos 2
α 1
α 1
2sin
α 1 cos
α 1
(4.54)
(cos 2
sin 2
α 1 cos
α 1
α 1 cos
α 1
α 1
α 1 )
sin
sin
Consequently, the three compatibility equations for fixed-angle theories are:
α 1 γ 12
2
ε = ε 1 cos 2
α 1 + ε 2 sin 2
2sin
α 1 cos
α 1
(4.55)
α 1 + γ 12
2
= ε 1 sin 2
α 1 + ε 2 cos 2
ε t
2sin
α 1 cos
α 1
(4.56)
γ t
2 =
α 1 + γ 12
2
(cos 2
sin 2
(
ε 1 ε 2 )sin
α 1 cos
α 1
α 1 )
(4.57)
 
Search WWH ::




Custom Search