Civil Engineering Reference
In-Depth Information
or
σ 1
cos
σ
cos
τ 12
α 1
sin
α 1
τ t
α 1
sin
α 1
=
(4.3)
τ 21
σ 2
sin
α 1
cos
α 1
τ t
σ t
sin
α 1
cos
α 1
Performing the matrix multiplications and noticing that
τ t = τ t and
τ 12 = τ 21 are applicable
to equilibrium condition result in the following three equations:
σ 1 = σ cos 2
α 1 + σ t sin 2
α 1 + τ t 2sin
α 1 cos
α 1
(4.4)
σ 2 = σ sin 2
α 1 + σ t cos 2
α 1 τ t 2sin
α 1 cos
α 1
(4.5)
α 1 + τ t (cos 2
sin 2
τ 12 =
σ + σ t )sin
α 1 cos
α 1
α 1 )
(
(4.6)
Equations (4.4)-(4.6) can be expressed in the matrix form by one equation:
σ 1
σ 2
τ 12
cos 2
α 1
sin 2
α 1
2sin
α 1 cos
α 1
σ
σ t
τ t
=
sin 2
cos 2
α 1
α 1
2sin
α 1 cos
α 1
(4.7)
(cos 2
sin 2
sin
α 1 cos
α 1
sin
α 1 cos
α 1
α 1
α 1 )
3 matrix in Equation (4.7) is the transformation matrix [ T ] for transforming the
stresses in the stationary
This 3
×
t coordinate to the stresses in the rotating 1-2 coordinate. Using
the tensor notation, Equation (4.7) becomes:
[
σ 12 ]
=
[ T ][
σ t ]
(4.8)
4.1.2 Mohr Stress Circle
The trigonometric functions of
α 1 in Equations (4.4)-(4.6) can be written in terms of double
angle 2
α 1 by
1
2 (1
cos 2
α 1 =
+
cos 2
α 1 )
(4.9)
1
2 (1
sin 2
α 1 =
cos 2
α 1 )
(4.10)
1
2 sin 2
sin
α 1 cos
α 1 =
α 1
(4.11)
cos 2
sin 2
α 1
α 1 =
cos 2
α 1
(4.12)
Substituting Equations (4.9)-(4.12) into Equations (4.4)-(4.6) gives the three transformation
equations in terms of the double angle 2
α 1 as follows:
σ + σ t
2
+ σ σ t
2
σ 1 =
α 1 + τ t sin 2
α 1
cos 2
(4.13)
σ + σ t
2
σ σ t
2
σ 2 =
cos 2
α 1 τ t sin 2
α 1
(4.14)
τ 12 =− σ σ t
2
sin 2
α 1 + τ t cos 2
α 1
(4.15)
Equations (4.13)-(4.15) had been recognized by Otto Mohr to be algebraically analogous
to a set of equations describing a circle in the
σ τ
coordinate, as shown in Figure 4.2(a).
 
Search WWH ::




Custom Search