Geology Reference
In-Depth Information
Pawlak, Z., & Lewandowski, R. (2010). Opti-
mization of viscoelastic dampers as described
by the fractional rheological model. In B. H. V.
Topping et al., (Eds.), Proceedings of The Tenth
International Conference on Computational
Structural Technology , (pp. 1-15). Stirlingshire,
UK: Civil-Comp Press.
Takewaki, L. (2009). Building control with
passive dampers. Optimal performance-based
design for earthquakes . Singapore: Wiley.
doi:10.1002/9780470824931
Tsuji, M., & Nakamura, T. (1996). Optimum
viscous dampers for stiffness design of shear
buildings. Structural Design of Tall Build-
ings , 5 , 217-234. doi:10.1002/(SICI)1099-
1794(199609)5:3<217::AID-TAL70>3.0.CO;2-R
Plevris, V., & Papadrakakis, M. (2011). A hybrid
particle swarm—gradient algorithm for global
structural optimization. Computer-Aided Civil
and Infrastructure Engineering , 26 , 48-68.
Viana, F. A. C., Kotinda, G. I., Rade, D. A., & Stef-
fen, V. (2008). Tuning dynamic vibration absorbers
by using ant colony optimization. Computers &
Structures , 86 , 1539-1549. doi:10.1016/j.comp-
struc.2007.05.009
Podlubny, I. (1999). Fractional differential equa-
tions . Academic Press.
Rossikhin, Y. A., & Shitikova, M. V. (2001). A
new method for solving dynamic problems of
fractional derivative viscoelasticity. International
Journal of Engineering Science , 39 (2), 149-176.
doi:10.1016/S0020-7225(00)00025-2
Wu, B., Ou, J. P., & Soong, T. T. (1997). Op-
timal placement of energy dissipation devices
for three-dimensional structures. Engineering
Structures , 19 , 113-125. doi:10.1016/S0141-
0296(96)00034-X
Singh, M. P., & Chang, T. S. (2009). Seismic
analysis of structures with viscoelastic dampers.
Journal of Engineering Mechanics , 135 , 571-580.
doi:10.1061/(ASCE)0733-9399(2009)135:6(571)
Yang, J. N., Kim, J. H., & Agrawal, A. K. (2002).
Optimal design of passive energy dissipation
systems based on H∞ and H 2 performances.
Earthquake Engineering & Structural Dynamics ,
31 , 921-936. doi:10.1002/eqe.130
Singh, M. P., & Moreschi, L. M. (2001). Optimal
seismic response control with dampers. Earth-
quake Engineering & Structural Dynamics , 30 ,
553-572. doi:10.1002/eqe.23
Zhang, R. H., & Soong, T. T. (1992). Seismic
design of viscoelastic dampers for structural ap-
plications. Journal of Structural Engineering ,
118 , 1375-1392. doi:10.1061/(ASCE)0733-
9445(1992)118:5(1375)
Singh, M. P., & Moreschi, L. M. (2002). Optimal
placement of dampers for passive response control.
Earthquake Engineering & Structural Dynamics ,
31 , 955-976. doi:10.1002/eqe.132
Zhu, H. P., Ge, D. D., & Huang, X. (2010).
Optimum connecting dampers to reduce the
seismic responses of parallel structures. Journal
of Sound and Vibration , 330 . doi:doi:10.1016/j.
jsv.2010.11.016
Soong, T. T., & Dargush, G. F. (1997). Passive
energy dissipation systems in structural engineer-
ing . London, UK: Wiley.
Soong, T. T., & Spencer, B. F. (2002). Supple-
mental energy dissipation: State-of-the-art and
state-of-the-practice. Engineering Structures , 24 ,
243-259. doi:10.1016/S0141-0296(01)00092-X
KEY TERMS AND DEFINITIONS
Active Systems: Active Vibration Control
involves the use of actuators (e.g., motors for
Search WWH ::




Custom Search