Geology Reference
In-Depth Information
tors and sensors, but also minimum responses of
the buildings under earthquake excitation. The
simulation also shows that the proposed MOGAs
are effectively capable of finding a set of optimal
solutions. In particular, GMGA outperforms over
NS2-IRR GA and SP2-IRR GA in terms of com-
putational time.
Brown, A. S., Ankireddi, S., & Yang, H. T. Y.
(1999). Actuator and sensor placement for multi-
objective control of structures. Journal of Struc-
tural Engineering , 125 , 757-765. doi:10.1061/
(ASCE)0733-9445(1999)125:7(757)
Cha, Y.-J. (2008). Structural control architecture
optimization for 3-D systems using advanced
multi-objective genetic algorithms . Ph.D. disser-
tation, Zachry Department of Civil Engineering,
Texas A&M University, College Station, TX.
REFERENCES
Adeli, H. and Saleh, A. (1999). Control, optimi-
zation, and smart structures: High performance
bridges .
Cha, Y.-J., & Agrawal, A. K. (2011). (in press).
Decentralized output feedback polynomial control
of seismically excited structures using genetic al-
gorithm. Journal of Structural Control & Health
Monitoring . doi:10.1002/stc.486
Agrawal, A. K., & Yang, J. N. (1999). Optimal
placement of passive dampers on seismic and
wind-excited buildings using combinatorial opti-
mization. Journal of Intelligent Material Systems
and Structures , 10 , 997-1014.
Cha, Y.-J., Kim, Y., Raich, A. M., & Agrawal, A.
K. (2011b). (in press). Multi-objective formula-
tion for actuator and sensor layouts of actively
controlled 3D buildings. Journal of Vibration
and Control .
Amini, F., & Tavassoli, M. R. (2005). Optimal
structural active control force, number and place-
ment of controllers. Engineering Structures , 27 (9),
1306-1316. doi:10.1016/j.engstruct.2005.01.006
Cha, Y.-J., Raich, A. M., & Barroso, L. R. (2009).
Near-optimal structural control architectures of
active devices and sensors using gene manipula-
tion genetic algorithms. 8 th World Congress on
Structural and Multidisciplinary Optimization,
Lisbon, Portugal, June 1-5.
Arbel, A. (1981). Controllability measures and
actuator placement in oscillatory systems. In-
ternational Journal of Control , 33 (3), 565-574.
doi:10.1080/00207178108922941
Cha, Y.-J., Raich, A. M., Barroso, L. R., & Agrawal,
A. K. (2011a). Optimal placements of active
control devices and sensors in frame structures
using multi-objective genetic algorithms. Journal
of Structural Control & Health Monitoring. DOI:
10.1002/stc.468
Barroso, L. R. (1999). Performance evaluation of
vibration controlled steel structures under seismic
loading . PhD Thesis, Department of Civil and
Environmental Engineering, Stanford University,
Stanford, CA.
Barroso, L. R., Breneman, S. E., & Smith, H.
A. (2002). Performance evaluation of con-
trolled steel frames under multi-level seismic
loads. Journal of Structural Engineering ,
128 (11), 1368-1378. doi:10.1061/(ASCE)0733-
9445(2002)128:11(1368)
Chen, C. C., & Chen, G. D. (2002). Nonlinear
control of a 20-story steel building with active
piezoelectric friction dampers. International
Journal of Structural Engineering and Mechan-
ics , 4 (1), 21-38.
Search WWH ::




Custom Search