Geology Reference
In-Depth Information
minimum displacement of the main girder,
the spatially equal damper distribution is
recommended for the uncertainty of the
traveling wave effect. The value of damp-
ing coefficient C is set as 15000 kN·s/m
when control efficiency are considered.
Andrzej, S., Przemyslaw, K., & Jan, H. S. (2008).
Damage identification in skeletal structures using
the virtual distortion method in frequency domain.
Mechanical Systems and Signal Processing , 22 (8),
1826-1839. doi:10.1016/j.ymssp.2008.03.009
Aydin, E., Boduroglu, M. H., & Guney, D. (2007).
Optimal damper distribution for seismic reha-
bilitation of planar building structures. Structure
Engineering , 29 (2), 176-185. doi:10.1016/j.
engstruct.2006.04.016
Analysis results show that the combination
of the AHP and first-order optimization
method is effective and reliable methods
in damper optimization for seismic control
of long-span suspension bridges. However,
more researches are required for the accu-
rate optimization of seismic control effect
of long-span suspension bridges.
Bao, Y. D., Wu, Y. P., He, Y., et al. (2004). An
improved AHP method in performance assess-
ment. WCICA 2004-Fifth World Congress on
Intelligent Control and Automation, Conference
Proceedings, Vol. 1, (pp. 177-180).
REFERENCES
Chen, G., & Wu, J. (2001). Optimal place-
ment of multiple tune mass dampers for
seismic structures. Structure Engineering ,
127 (9), 1054-1062. doi:10.1061/(ASCE)0733-
9445(2001)127:9(1054)
Abdel-Ghaffar, A. M. (2000). Vibration studies
and tests of a suspension bridge. Computers &
Structures , 76 (6), 787-797.
Abdel-Ghaffar, A. M., & Rubin, L. I. (1982).
Suspension bridge response to multiple-support
excitations. Journal of Engineering Mechanics ,
108 (2), 419-435.
Dühring, M. B., Jensen, J. S., & Sigmund, O.
(2008). Acoustic design by topology optimiza-
tion. Sound and Vibration , 317 (3), 557-575.
doi:10.1016/j.jsv.2008.03.042
Abdel-Ghaffar, A. M., & Rubin, L. I. (1983a).
Vertical seismic behavior of suspension bridges.
Earthquake Engineering & Structural Dynamics ,
11 (1), 1-19. doi:10.1002/eqe.4290110103
Erkus, B., Abe, M., & Fujino, Y. (2002). In-
vestigation of semi-active control for seismic
protection of elevated highway bridges. Struc-
ture Engineering , 24 (3), 281-293. doi:10.1016/
S0141-0296(01)00095-5
Abdel-Ghaffar, A. M., & Rubin, L. I. (1983b).
Lateral earthquake response of suspension
bridges. Journal of Engineering Mechanics ,
109 (3), 664-675.
Ernst, J. H. (1965). Der E-Modul von Seilen
unter Berucksichtigung des Durchhanges. Der
Bauingenieur , 40 (2), 52-55.
Abe, M., & Fujino, Y. (1998). Optimal design of
passive energy dissipation devices for seismic
protection of bridges. [in Japanese]. J Struct Mech
Earthquake Eng , 605 (45), 41-52.
Fan, L. C. (1997). Seismic analysis of bridge .
Shanghai, China: Tongji University Press.
Furuya, O., Hamazaki, H., & Fujita, S. (1998).
Study on proper distribution of storey-installation
type damper for vibration control of slender
structures using genetic algorithm. Joint Pressure
Vessels and Piping Conference, 364 , 297-304.
Agrawal, A. K., & Yang, J. N. (2000). Optimal
placement of passive dampers on seismic and
wind-excited buildings using combinatorial opti-
mization. International Mater System Structure ,
10 (12), 997-1014.
Search WWH ::




Custom Search