Biology Reference
In-Depth Information
and pharynx of amphioxus, a chordate lacking neural crest. Development , 129 ,
2905-2916.
Essner, J. J., Breuer, J. J., Essner, R. D., Fahrenkrug, S. C., & Hackett, P. B., Jr. (1997). The
zebrafish thyroid hormone receptor alpha 1 is expressed during early embryogenesis and
can function in transcriptional repression. Differentiation , 62 , 107-117.
Fini, J. B., Le MĀ“vel, S., Palmier, K., Darras, V. M., Punzon, I., Richardson, S. J., et al.
(2012). Thyroid hormone signalling in the Xenopus laevis embryo is functional and sus-
ceptible to endocrine disruption. Endocrinology , 153 , 5068-5081.
Fini, J. B., Le Mevel, S., Turque, N., Palmier, K., Zalko, D., Cravedi, J. P., et al. (2007). An
in vivo multiwell-based fluorescent screen for monitoring vertebrate thyroid hormone
disruption. Environmental Science and Technology , 41 , 5908-5914.
Fini, J. B., Riu, A., Debrauwer, L., Hillenweck, A., Le Mevel, S., Chevolleau, S., et al.
(2012). Parallel biotransformation of tetrabromobisphenol A in Xenopus laevis and mam-
mals: Xenopus as a model for endocrine perturbation studies. Toxicological Sciences , 125 ,
359-367.
Flamant, F., & Samarut, J. (1998). Involvement of thyroid hormone and its alpha receptor in
avian neurulation. Developments in Biologicals , 197 , 1-11.
Forrest, D., Hallbook, F., Persson, H., & Vennstrom, B. (1991). Distinct functions for thy-
roid hormone receptors alpha and beta in brain development indicated by differential
expression of receptor genes. The EMBO Journal , 10 , 269-275.
Forrest, D., Sjoberg, M., & Vennstrom, B. (1990). Contrasting developmental and tissue-
specific expression of alpha and beta thyroid hormone receptor genes. The EMBO Jour-
nal , 9 , 1519-1528.
Friesema, E. C., Ganguly, S., Abdalla, A., Manning Fox, J. E., Halestrap, A. P., & Visser, T. J.
(2003). Identification of monocarboxylate transporter 8 as a specific thyroid hormone
transporter. The Journal of Biological Chemistry , 278 , 40128-40135.
Galton, V. A. (2005). The roles of the iodothyronine deiodinases in mammalian develop-
ment. Thyroid , 15 , 823-834.
Gancedo, B., Alonso-Gomez, A. L., de Pedro, N., Delgado, M. J., & Alonso-Bedate, M.
(1997). Changes in thyroid hormone concentrations and total contents through ontog-
eny in three anuran species: Evidence for daily cycles. General and Comparative Endocri-
nology , 107 , 240-250.
Gauger, K. J., Giera, S., Sharlin, D. S., Bansal, R., Iannacone, E., & Zoeller, R. T. (2007).
Polychlorinated biphenyls 105 and 118 form thyroid hormone receptor agonists after
cytochrome P4501A1 activation in rat pituitary GH3 cells. Environmental Health Perspec-
tives , 115 , 1623-1630.
Geysens, S., Ferran, J. L., Van Herck, S. L., Tylzanowski, P., Puelles, L., & Darras, V. M.
(2012). Dynamic mRNA distribution pattern of thyroid hormone transporters and
deiodinases during early embryonic chicken brain development. Neuroscience , 221 ,
69-85.
Gibert, Y., Sassi-Messai, S., Fini, J. B., Bernard, L., Zalko, D., Cravedi, J. P., et al. (2011).
Bisphenol A induces otolith malformations during vertebrate embryogenesis. BMC
Developmental Biology , 11 ,4.
Glinoer, D. (2000). Potential repercussions for the progeny of maternal hypothyroxinmia
during pregnancy. Thyroid , 10 , 59-62.
Gothe, S., Wang, Z., Ng, L., Kindblom, J. M., Barros, A. C., Ohlsson, C., et al. (1999). Mice
devoid of all known thyroid hormone receptors are viable but exhibit disorders of the
pituitary-thyroid axis, growth, and bone maturation. Genes & Development , 13 ,
1329-1341.
Greenberg, J. H., Reivich, M., Gordon, J. T., Schoenhoff, M. B., Patlak, C. S., &
Dratman, M. B. (2006). Imaging triiodothyronine binding kinetics in rat brain: A model
for studies in human subjects. Synapse , 60 , 212-222.
Search WWH ::




Custom Search