Biology Reference
In-Depth Information
2009 ), indicate that miRNAs tailor gene expression required for muscle cell
shape and behavior. In addition to this role in the terminal differentiation of
muscle cells, though, experiments involving either the overexpression or
antisense-mediated abrogation of miRNAs in animals or cell culture indi-
cate that some miRNAs can have profound effects on directing mesoderm
and muscle cell fate as well ( Cordes et al ., 2009 ; Ivey et al ., 2008 ). A key
question, then, is why such roles for muscle miRNAs have not been
gleaned from genetic knockouts. One answer could simply be redundancy,
and the construction of compound miRNA mutants should address that.
Another possibility is that miRNA mutants display fate changes only under
certain conditions, and identifying those conditions would provide great
insight into muscle miRNA function. A third possibility is that the early
embryonic expression of muscle miRNAs simply reflects regulation pre-
dominantly required for postdevelopmental functions. Indeed, many mus-
cle miRNAs regulate adult muscle physiology and behavior in response to
stress (see, e.g., van Rooij et al ., 2007 ). In any case, the continued analysis of
miRNA function in muscles is sure to produce many exciting discoveries.
REFERENCES
Aboobaker, A. A., Tomancak, P., Patel, N., Rubin, G. M., and Lai, E. C. (2005). Proc. Natl.
Acad. Sci. USA 102, 18017-18022.
Albinsson, S., Suarez, Y., Skoura, A., Offermanns, S., Miano, J. M., and Sessa, W. C. (2010).
Arterioscler. Thromb. Vasc. Biol. 30, 1118-1126.
Alvarez-Saavedra, E., and Horvitz, H. R. (2010). Curr. Biol. 20, 367-373.
Ambros, V. (2004). Nature 431, 350-355.
Bartel, D. P. (2009). Cell 136, 215-233.
Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z.,
Mills, A. A., Elledge, S. J., Anderson, K. V., and Hannon, G. J. (2003). Nat. Genet.
35, 215-217.
Biemar, F., Zinzen, R., Ronshaugen, M., Sementchenko, V., Manak,
J. R., and
Levine, M. S. (2005). Proc. Natl. Acad. Sci. USA 102, 15907-15911.
Boettger, T., Beetz, N., Kostin, S., Schneider, J., Kruger, M., Hein, L., and Braun, T.
(2009). J. Clin. Invest. 119, 2634-2647.
Boutz, P. L., Chawla, G., Stoilov, P., and Black, D. L. (2007). Genes Dev. 21, 71-84.
Brenner, J. L., Jasiewicz, K. L., Fahley, A. F., Kemp, B. J., and Abbott, A. L. (2010). Curr.
Biol. 20, 1321-1325.
Buckingham, M. (2006). Curr. Opin. Genet. Dev. 16, 525-532.
Callis, T. E., Pandya, K., Seok, H. Y., Tang, R. H., Tatsuguchi, M., Huang, Z. P.,
Chen, J. F., Deng, Z., Gunn, B., Shumate, J., Willis, M. S., Selzman, C. H., et al .
(2009). J. Clin. Invest. 119, 2772-2786.
Caygill, E. E., and Johnston, L. A. (2008). Curr. Biol. 18, 943-950.
Cheloufi, S., Dos Santos, C. O., Chong, M. M., and Hannon, G. J. (2010). Nature
465,
584-589.
Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M.,
Conlon, F. L., and Wang, D. Z. (2006). Nat. Genet. 38, 228-233.
Search WWH ::




Custom Search