Geology Reference
In-Depth Information
Hart, G. C., & Wong, K. (2000). Structural dy-
namics for structural engineers . New York, NY:
John Wiley & Sons.
Khashaee, P. (2004). Damage-based seismic
design of structures. Earthquake Spectra , 21 (2),
371-387. doi:10.1193/1.1896366
Haselton, C., Baker, J. W., Liel, A. B., & Deier-
lein, G. G. (2011). Accounting for ground mo-
tion spectral shape characteristics in structural
collapse assessment through an adjustment for
epsilon. Journal of Structural Engineering ,
137 (3), 332-344. doi:10.1061/(ASCE)ST.1943-
541X.0000103
Kiureghian, A. D., & Crempien, J. (1989). An
evolutionary model for earthquake ground motion.
Structural Safety , 6 , 235-246. doi:10.1016/0167-
4730(89)90024-6
Liang, Q. Q. (2005). Performance-based optimi-
zation of structures . New York, NY: Spon Press.
doi:10.4324/9780203334713
He, W. L., & Agrawal, A. K. (2008). Ana-
lytical model of ground motion pulses for the
design and assessment of seismic protective
systems. Journal of Structural Engineering ,
134 (7), 1177-1188. doi:10.1061/(ASCE)0733-
9445(2008)134:7(1177)
Mahin, S. A., & Bertero, V. V. (1981). An evalu-
ation of inelastic seismic design spectra. Journal
of the Structural Division , 107 (ST9), 1777-1795.
McGuire, R. K. (1995). Probabilistic seismic
hazard analysis and design earthquake: Closing
the loop. Bulletin of the Seismological Society
of America , 85 , 1275-1284.
Housner, G. W., & Hudson, D. E. (1958). The
Port Hueneme earthquake of March 18, 1957.
Bulletin of the Seismological Society of America ,
48 , 163-168.
Mehanny, S. S., & Deierlein, G. G. (2000). Model-
ing of assessment of seismic performance of com-
posite frames with reinforced concrete columns
and steel beams. Report No. 135, The John Blume
Earthquake Research Center, Stanford University.
Iyengar, R. N. (1972). Worst inputs and a bound
on the highest peak statistics of a class of non-
linear systems. Journal of Sound and Vibration ,
25 , 29-37. doi:10.1016/0022-460X(72)90593-7
Moustafa, A. (2002). Deterministic/reliability-
based critical earthquake load models for linear/
nonlinear engineering structures . Doctoral disser-
tation, Department of Civil Engineering, Indian
Institute of Science, Bangalore, India.
Kalkan, E., & Kunnath, S. K. (2006). Effects of
fling step and forward directivity on seismic re-
sponse of buildings. Earthquake Spectra , 22 (2),
367-390. doi:10.1193/1.2192560
Moustafa, A. (2009). Critical earthquake load
inputs for multi-degree-of-freedom inelastic
structures. Journal of Sound and Vibration , 325 ,
532-544. doi:10.1016/j.jsv.2009.03.022
Kalkan, E., & Kunnath, S. K. (2008). Rel-
evance of absolute and relative energy con-
tent in seismic evaluation of structures. Ad-
vances in Structural Engineering , 11 (1), 1-18.
doi:10.1260/136943308784069469
Moustafa, A. (2009). Discussion of the effect of
energy concentration of earthquake ground mo-
tions on the nonlinear response of RC structures.
Soil Dynamics and Earthquake Engineering , 29 ,
1181-1183. doi:10.1016/j.soildyn.2009.02.004
Kalkan, E., & Luco, N. (Eds.). (2011). Earthquake
ground motion selection and modification for
nonlinear dynamic analysis of structures. Jour-
nal of Structural Engineering , 137 (3), 277-467.
doi:10.1061/(ASCE)ST.1943-541X.0000355
Search WWH ::




Custom Search