Graphics Reference
In-Depth Information
3.1.6.3 INCIRCLE2D( A , B , C , D )
Given four 2D points A
=
( a x , a y ), B
=
( b x , b y ), C
=
( c x , c y ), and D
=
( d x , d y ), define
INCIRCLE2D( A , B , C , D )as
a x +
a y
a x
a y
1
b x +
b y
b x
b y
1
INCIRCLE2D( A , B , C , D )
=
c x +
c y
c x
c y
1
d x +
d y
d x
d y
1
d x ) 2
d y ) 2
a x
d x
a y
d y
( a x
+
( a y
d x ) 2
d y ) 2
=
b x
d x
b y
d y
( b x
+
( b y
.
d x ) 2
d y ) 2
c x
d x
c y
d y
( c x
+
( c y
Let
the
triangle ABC appear
in
counterclockwise
order,
as
indicated
by
>
>
ORIENT2D( A , B , C )
0, D lies inside the
circle through the three points A , B , and C . If instead INCIRCLE2D( A , B , C , D )
0. Then, when INCIRCLE2D( A , B , C , D )
<
0,
D lies outside the circle. When INCIRCLE2D( A , B , C , D )
=
0, the four points are
cocircular. If ORIENT2D( A , B , C )
<
0, the result is reversed.
3.1.6.4 INSPHERE( A , B , C , D , E )
Given five 3D points A
=
( a x , a y , a z ), B
=
( b x , b y , b z ), C
=
( c x , c y , c z ), D
=
( d x , d y , d z ),
and E
=
( e x , e y , e z ), define INSPHERE( A , B , C , D , E )as
a x +
a y +
a z
a x
a y
a z
1
b x +
b y +
b z
b x
b y
b z
1
c x +
c y +
c z
INSPHERE( A , B , C , D , E )
=
c x
c y
c z
1
d x +
d y +
d z
d x
d y
d z
1
e x +
e y +
e z
e x
e y
e z
1
e x ) 2
e y ) 2
e z ) 2
a x
e x
a y
e y
a z
e z
( a x
+
( a y
+
( a z
e x ) 2
e y ) 2
e z ) 2
b x
e x
b y
e y
b z
e z
( b x
+
( b y
+
( b z
=
.
e x ) 2
e y ) 2
e z ) 2
c x
e x
c y
e y
c z
e z
( c x
+
( c y
+
( c z
e x ) 2
e y ) 2
e z ) 2
d x
e x
d y
e y
d z
e z
( d x
+
( d y
+
( d z
Let the four points A , B , C , and D be oriented such that ORIENT3D( A , B , C , D )
>
0.
Then, when INSPHERE( A , B , C , D , E )
0, E lies inside the sphere through A , B ,
C , and D . If instead INSPHERE( A , B , C , D , E )
>
<
0, E lies outside the sphere. When
=
INSPHERE( A , B , C , D , E )
0, the five points are cospherical.
Search WWH ::




Custom Search