Graphics Reference
In-Depth Information
Now let's see what a
×
b
×
c expands to. With reference to the above argument, we can state
that
i
j
k
a
×
b
×
c
=
y a z b
y b z a
z a x b
z b x a
x a y b
x b y a
x c
y c
z c
Expanding gives
a
×
b
×
c
=
z c z a x b
z b x a
y c x a y b
x b y a i
+
x c x a y b
x b y a
z c y a z b
y b z a j
+
y c y a z b
y b z a
x c z a x b
z b x a k
Expanding again gives
a
×
b
×
c
=
x b z a z c
x a z b z c
x a y b y c +
x b y a y c i
+
x a x c y b
x b x c y a y a z b z c +
y b z a z c j
+
y a y c z b
y b y c z a
x b x c z a +
x a x c z b k
Again we split the above expansion as closely as possible into the form a
+
b by isolating the
a and b components:
a
×
b
×
c
=
x b y a y c +
z a z c i
x a y b y c +
z b z c i
+
y b x a x c +
z a z c j
y a x b x c +
z b z c j
+
z b x a x c +
y a y c k
z a x b x c +
y b y c k
(B.5)
Once more, something's missing. Looking carefully at the expressions y a y c +
z a z c , x a x c +
z a z c ,
and x a x c +
y a y c in Eq. (B.5), we notice that they are similar to the dot-product expansion,
except each has a missing term. These missing terms are x a x c , y a y c , and z a z c , respectively, and
can be introduced by adding
x b x a x c i
+
y b y a y c j
+
z b z a z c k
to the RHS of Eq. (B.5). Fortunately, x b x a x c i
z b z a z c k has to be subtracted
from the RHS of Eq. (B.5) to convert the remaining terms into dot-product form. Thus, we get
+
y b y a y c j
+
×
×
=
x b x a x c +
y a y c +
+
y b x a x c +
y a y c +
+
z b x a x c +
y a y c +
a
b
c
z a z c i
z a z b j
z a z b k
x a x b x c +
y b y c +
y a x b x c +
y b y c +
z a x b x c +
y b y c +
z b z c i
z b z c j
z b z c k
which contains dot products:
a
×
b
×
c
=
x b a
·
c i
+
y b a
·
c j
+
z b a
·
c k
x a b
·
c i
y a b
·
c j
z a b
·
c k
(B.6)
Search WWH ::




Custom Search