Graphics Reference
In-Depth Information
where
s 2
x 2
y 2
z 2
+
+
+
=
1
and the pure quaternion v, which contains the position vector v :
=
+
v
0
v
Therefore,
qv
¯
q
=
s
+
q 0
+
v s
q
Multiplying the first two quaternions gives
¯
=
·
+
+
×
qv
q
q
v
s v
q
v s
q
Multiplying these quaternions gives
qv
q
¯
=−
q
·
v s
s v
+
q
×
v
·
q
+
q
·
v
q
+
s s v
+
q
×
v
+
s v
+
q
×
v
×
q
Rearranging and simplifying terms gives
s 2 v
qv
¯
q
=−
s q
·
v
+
s v
·
q
+
q
·
v
q
+
+
s q
×
v
+
s v
×
q
+
q
×
v
×
q
qv
q
¯
=
q
·
v q
+
s 2 v
+
s q
×
v
+
s v
×
q
+
q
×
v
×
q
Using the triple vector product identity gives
q
×
v
×
q
=−
q
·
qv
+
v
·
q q
Therefore,
¯
=
·
+
s 2 v
+
×
+
×
·
+
·
qv
q
q
v q
s q
v
s q
v
q
qv
v
q q
= s 2
v
2
qv
q
¯
q
+
2 q
·
v q
+
2s q
×
v
(7.24)
The next task is to convert Eq. (7.24) into a matrix, which we will do in three steps.
Converting s 2
v :
2
q
2
x 2
y 2
z 2
s 2
q
=
+
+
=
1
Therefore,
1
s 2 =
2
s 2
=
s 2
2s 2
q
1
and
s 2
v
= 2s 2
1 v
= 2s 2
1 x v i
+ 2s 2
1 y v j
+ 2s 2
1 z v k
2
q
2s 2
10 0
0 s 2
x v
y v
z v
s 2
v
2
q
=
10
2s 2
0
0
1
Search WWH ::




Custom Search